467 research outputs found

    A Review of Bayesian Methods in Electronic Design Automation

    Full text link
    The utilization of Bayesian methods has been widely acknowledged as a viable solution for tackling various challenges in electronic integrated circuit (IC) design under stochastic process variation, including circuit performance modeling, yield/failure rate estimation, and circuit optimization. As the post-Moore era brings about new technologies (such as silicon photonics and quantum circuits), many of the associated issues there are similar to those encountered in electronic IC design and can be addressed using Bayesian methods. Motivated by this observation, we present a comprehensive review of Bayesian methods in electronic design automation (EDA). By doing so, we hope to equip researchers and designers with the ability to apply Bayesian methods in solving stochastic problems in electronic circuits and beyond.Comment: 24 pages, a draft version. We welcome comments and feedback, which can be sent to [email protected]

    Adaptive Integrated Circuit Design for Variation Resilience and Security

    Get PDF
    The past few decades witness the burgeoning development of integrated circuit in terms of process technology scaling. Along with the tremendous benefits coming from the scaling, challenges are also presented in various stages. During the design time, the complexity of developing a circuit with millions to billions of smaller size transistors is extended after the variations are taken into account. The difficulty of analyzing these nondeterministic properties makes the allocation scheme of redundant resource hardly work in a cost-efficient way. Besides fabrication variations, analog circuits are suffered from severe performance degradations owing to their physical attributes which are vulnerable to aging effects. As such, the post-silicon calibration approach gains increasing attentions to compensate the performance mismatch. For the user-end applications, additional system failures result from the pirated and counterfeited devices provided by the untrusted semiconductor supply chain. Again analog circuits show their weakness to this threat due to the shortage of piracy avoidance techniques. In this dissertation, we propose three adaptive integrated circuit designs to overcome these challenges respectively. The first one investigates the variability-aware gate implementation with the consideration of the overhead control of adaptivity assignment. This design improves the variation resilience typically for digital circuits while optimizing the power consumption and timing yield. The second design is implemented as a self-validation system for the calibration of diverse analog circuits. The system is completely integrated on chip to enhance the convenience without external assistance. In the last design, a classic analog component is further studied to establish the configurable locking mechanism for analog circuits. The use of Satisfiability Modulo Theories addresses the difficulty of searching the unique unlocking pattern of non-Boolean variables

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    Exploiting Adaptive Techniques to Improve Processor Energy Efficiency

    Get PDF
    Rapid device-miniaturization keeps on inducing challenges in building energy efficient microprocessors. As the size of the transistors continuously decreasing, more uncertainties emerge in their operations. On the other hand, integrating more and more transistors on a single chip accentuates the need to lower its supply-voltage. This dissertation investigates one of the primary device uncertainties - timing error, in microprocessor performance bottleneck in NTC era. Then it proposes various innovative techniques to exploit these opportunities to maintain processor energy efficiency, in the context of emerging challenges. Evaluated with the cross-layer methodology, the proposed approaches achieve substantial improvements in processor energy efficiency, compared to other start-of-art techniques

    Reliability in the face of variability in nanometer embedded memories

    Get PDF
    In this thesis, we have investigated the impact of parametric variations on the behaviour of one performance-critical processor structure - embedded memories. As variations manifest as a spread in power and performance, as a first step, we propose a novel modeling methodology that helps evaluate the impact of circuit-level optimizations on architecture-level design choices. Choices made at the design-stage ensure conflicting requirements from higher-levels are decoupled. We then complement such design-time optimizations with a runtime mechanism that takes advantage of adaptive body-biasing to lower power whilst improving performance in the presence of variability. Our proposal uses a novel fully-digital variation tracking hardware using embedded DRAM (eDRAM) cells to monitor run-time changes in cache latency and leakage. A special fine-grain body-bias generator uses the measurements to generate an optimal body-bias that is needed to meet the required yield targets. A novel variation-tolerant and soft-error hardened eDRAM cell is also proposed as an alternate candidate for replacing existing SRAM-based designs in latency critical memory structures. In the ultra low-power domain where reliable operation is limited by the minimum voltage of operation (Vddmin), we analyse the impact of failures on cache functional margin and functional yield. Towards this end, we have developed a fully automated tool (INFORMER) capable of estimating memory-wide metrics such as power, performance and yield accurately and rapidly. Using the developed tool, we then evaluate the #effectiveness of a new class of hybrid techniques in improving cache yield through failure prevention and correction. Having a holistic perspective of memory-wide metrics helps us arrive at design-choices optimized simultaneously for multiple metrics needed for maintaining lifetime requirements

    Process Variation Aware DRAM (Dynamic Random Access Memory) Design Using Block-Based Adaptive Body Biasing Algorithm

    Get PDF
    Large dense structures like DRAMs (Dynamic Random Access Memory) are particularly susceptible to process variation, which can lead to variable latencies in different memory arrays. However, very little work exists on variation studies in DRAMs. This is due to the fact that DRAMs were traditionally placed off-chip and their latency changes due to process variation did not impact the overall processor performance. However, emerging technology trends like three-dimensional integration, use of sophisticated memory controllers, and continued scaling of technology node, substantially reduce DRAM access latency. Hence, future technology nodes will see widespread adoption of embedded DRAMs. This makes process variation a critical upcoming challenge in DRAMs that must be addressed in current and forthcoming technology generations. In this paper, techniques for modeling the effect of random, as well as spatial variation, in large DRAM array structures are presented. Sensitivity-based gate level process variation models combined with statistical timing analysis are used to estimate the impact of process variation on the DRAM performance and leakage power. A simulated annealing-based Vth assignment algorithm using adaptive body biasing is proposed in this thesis to improve the yield of DRAM structures. By applying the algorithm on a 1GB DRAM array, an average of 14.66% improvement in the DRAM yield is obtained

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Design, Fabrication, and Run-time Strategies for Hardware-Assisted Security

    Get PDF
    Today, electronic computing devices are critically involved in our daily lives, basic infrastructure, and national defense systems. With the growing number of threats against them, hardware-based security features offer the best chance for building secure and trustworthy cyber systems. In this dissertation, we investigate ways of making hardware-based security into a reality with primary focus on two areas: Hardware Trojan Detection and Physically Unclonable Functions (PUFs). Hardware Trojans are malicious modifications made to original IC designs or layouts that can jeopardize the integrity of hardware and software platforms. Since most modern systems critically depend on ICs, detection of hardware Trojans has garnered significant interest in academia, industry, as well as governmental agencies. The majority of existing detection schemes focus on test-time because of the limited hardware resources available at run-time. In this dissertation, we explore innovative run-time solutions that utilize on-chip thermal sensor measurements and fundamental estimation/detection theory to expose changes in IC power/thermal profile caused by Trojan activation. The proposed solutions are low overhead and also generalizable to many other sensing modalities and problem instances. Simulation results using state-of-the-art tools on publicly available Trojan benchmarks verify that our approaches can detect Trojans quickly and with few false positives. Physically Unclonable Functions (PUFs) are circuits that rely on IC fabrication variations to generate unique signatures for various security applications such as IC authentication, anti-counterfeiting, cryptographic key generation, and tamper resistance. While the existence of variations has been well exploited in PUF design, knowledge of exactly how variations come into existence has largely been ignored. Yet, for several decades the Design-for-Manufacturability (DFM) community has actually investigated the fundamental sources of these variations. Furthermore, since manufacturing variations are often harmful to IC yield, the existing DFM tools have been geared towards suppressing them (counter-intuitive for PUFs). In this dissertation, we make several improvements over current state-of-the-art work in PUFs. First, our approaches exploit existing DFM models to improve PUFs at physical layout and mask generation levels. Second, our proposed algorithms reverse the role of standard DFM tools and extend them towards improving PUF quality without harming non-PUF portions of the IC. Finally, since our approaches occur after design and before fabrication, they are applicable to all types of PUFs and have little overhead in terms of area, power, etc. The innovative and unconventional techniques presented in this dissertation should act as important building blocks for future work in cyber security

    ポータビリティを意識したCMOSミックスドシグナルVLSI回路設計手法に関する研究

    Get PDF
    本研究は、半導体上に集積されたアナログ・ディジタル・メモリ回路から構成されるミクストシグナルシステムを別の製造プロセスへ移行することをポーティングとして定義し、効率的なポーティングを行うための設計方式と自動回路合成アルゴリズムを提案し、いくつかの典型的な回路に対する設計事例を示し、提案手法の妥当性を立証している。北九州市立大
    corecore