59 research outputs found

    Programmierbare Josephson-Arrays für Impedanzmessungen

    Get PDF
    An innovative way of networking two programmable Josephson arrays generating synchronous waveforms for impedance ratio measurements, as the first of its kind, is presented. This pioneering approach of the Josephson Impedance Bridges is far more flexible than conventional bridges at the same level of measurement uncertainty. Results prove that aside from having the capability of measuring over a wider frequency range, the Josephson bridge permits measurements on two impedances with any value of phase angle between them. In the two-terminal-pair Josephson bridge setup, measurements are made for a 1:1 resistance ratio at the 10-k level in the frequency range between 25 Hz and 10 kHz. Uncertainties reach to levels of better than a few parts in 108 and results agree to the values measured from conventional impedance bridges. Two methods for four-terminal impedance measurements have been investigated, the potential comparison circuit and the coaxial setup. Both methods are capable of measuring from DC to 6 kHz with uncertainties to 10−8. The four-terminal-pair coaxial setup has potential to decrease the relative uncertainty down to 10−9 once systematic errors are analyzed and canceled. Thermal converter measurements have been made to investigate the effects of transients on stepwise approximated sinewaves. Rms measurements show that transients limit the uncertainty to about 10−6 at 1 kHz. A simple model with an equivalent time constant is presented to evaluate the influence of different parameters on the shape of the transients. It has been experimentally established, at the 10−8 level of uncertainty for the determination of impedance ratios, that the variations of the transients in stepwise approximated waveforms can be neglected when using the fundamental component of rectangular waveforms. Quantization at up to 10 kHz has been confirmed by varying the bias current of the Josephson arrays resulting in constant resistance ratios within the measurement resolution.Ein innovativer Weg, zwei programmierbare Josephson-Schaltungen für Impedanz-Verhältnismessungen zu verknüpfen, wird erstmals in dieser Arbeit präsentiert. Dieser neuartige Ansatz einer Josephson-Impedanzmessbrücke ist flexibler als konventionelle Impedanzmessbrücken bei gleicher Messunsicherheit. Es wird gezeigt, dass neben der Möglichkeit, über einen wesentlich größeren Frequenzbereich zu messen, die Josephson-Impedanzmessbrücke auch Messungen sehr unterschiedlicher Impedanzverhältnisse und beliebiger Phasenwinkel erlaubt. In einer Zwei-Tor-Anordnung der Josephson-Impedanzmessbrücke wurden Messungen für ein 1:1 Widerstandsverhältnis bei 10 k im Frequenzbereich von 25 Hz bis 10 kHz durchgeführt. Die Ergebnisse stimmen mit denen einer konventionellen Messbrücke im Rahmen der Unsicherheit von wenigen 10−8 überein. Für eine Vier-Tor-Anordnung wurden zwei unterschiedliche Methoden untersucht, eine Spannungsverhältnisschaltung und eine koaxiale Vier-Tor-Anordnung. Letztere hat das Potential, Unsicherheiten von 10−9 zu erreichen, sobald systematische Fehler eliminiert sind. Um Effekte der Transienten in stufenförmig approximierten Sinuswellen zu untersuchen, wurden Messungen an Thermokonvertern durchgeführt. Diese Effektivmessungen zeigen, dass Transienten die relative Messunsicherheiten auf etwa 10−6 bei einer Frequenz von 1 kHz beschränken. Es wird ein einfaches Modell vorgestellt, das die Form der Transienten in Abhängigkeit der wesentlichen Parameter beschreibt. Experimentell konnte bei Impedanzverhältnismessungen mit einer relativen Messunsicherheit von 10−8 nachgewiesen werden, dass die Variation der Transienten in stufenförmig approximierten Wellenformen vernachlässigbar ist, wenn die fundamentale Komponente eines Rechtecksignals verwendet wird. Quantisierte Plateaus wurden bis zu Frequenzen von 10 kHz gefunden, bei denen die Variation des angelegten Stroms durch die Josephson-Schaltungen keine Veränderung des Impedanzverhältnisses zur Folge hatte

    Temporal integration of loudness as a function of level

    Get PDF

    Superconductors at the Nanoscale

    Get PDF
    By covering theory, design, and fabrication of nanostructured superconducting materials, this monograph is an invaluable resource for research and development. Examples are energy saving solutions, healthcare, and communication technologies. Key ingredients are nanopatterned materials which help to improve the superconducting critical parameters and performance of superconducting devices, and lead to novel functionalities. Contents Tutorial on nanostructured superconductors Imaging vortices in superconductors: from the atomic scale to macroscopic distances Probing vortex dynamics on a single vortex level by scanning ac-susceptibility microscopy STM studies of vortex cores in strongly confined nanoscale superconductors Type-1.5 superconductivity Direct visualization of vortex patterns in superconductors with competing vortex-vortex interactions Vortex dynamics in nanofabricated chemical solution deposition high-temperature superconducting films Artificial pinning sites and their applications Vortices at microwave frequencies Physics and operation of superconducting single-photon devices Josephson and charging effect in mesoscopic superconducting devices NanoSQUIDs: Basics & recent advances intrinsic Josephson junction stacks as emitters of terahertz radiation| Interference phenomena in superconductor-ferromagnet hybrids Spin-orbit interactions, spin currents, and magnetization dynamics in superconductor/ferromagnet hybrids Superconductor/ferromagnet hybrid

    Nondestructive Testing Methods and New Applications

    Get PDF
    Nondestructive testing enables scientists and engineers to evaluate the integrity of their structures and the properties of their materials or components non-intrusively, and in some instances in real-time fashion. Applying the Nondestructive techniques and modalities offers valuable savings and guarantees the quality of engineered systems and products. This technology can be employed through different modalities that include contact methods such as ultrasonic, eddy current, magnetic particles, and liquid penetrant, in addition to contact-less methods such as in thermography, radiography, and shearography. This book seeks to introduce some of the Nondestructive testing methods from its theoretical fundamentals to its specific applications. Additionally, the text contains several novel implementations of such techniques in different fields, including the assessment of civil structures (concrete) to its application in medicine

    Plasmonic nanoantenna based coupler for telecom range

    Get PDF

    Decoherence, control, and encoding of coupled solid-state quantum bits

    Get PDF
    In this thesis the decoherence properties, gate performance, control of solid-state quantum bits (qubits), and novel design proposals for solid-state qubits analogous to quantum optics are investigated. The qubits are realized as superconducting nanocircuits or quantum dot systems. The thesis elucidates both very appealing basic questions, like the generation and detection of deeply nonclassical states of the electromagnetic field, i.e., single photon Fock states, in the solid-state, but also presents a broad range of different strategies to improve the scalability and decoherence properties of solid-state qubit setups

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Temporal integration of loudness as a function of level

    Full text link
    corecore