1,285 research outputs found

    A Framework for QoS-aware Execution of Workflows over the Cloud

    Full text link
    The Cloud Computing paradigm is providing system architects with a new powerful tool for building scalable applications. Clouds allow allocation of resources on a "pay-as-you-go" model, so that additional resources can be requested during peak loads and released after that. However, this flexibility asks for appropriate dynamic reconfiguration strategies. In this paper we describe SAVER (qoS-Aware workflows oVER the Cloud), a QoS-aware algorithm for executing workflows involving Web Services hosted in a Cloud environment. SAVER allows execution of arbitrary workflows subject to response time constraints. SAVER uses a passive monitor to identify workload fluctuations based on the observed system response time. The information collected by the monitor is used by a planner component to identify the minimum number of instances of each Web Service which should be allocated in order to satisfy the response time constraint. SAVER uses a simple Queueing Network (QN) model to identify the optimal resource allocation. Specifically, the QN model is used to identify bottlenecks, and predict the system performance as Cloud resources are allocated or released. The parameters used to evaluate the model are those collected by the monitor, which means that SAVER does not require any particular knowledge of the Web Services and workflows being executed. Our approach has been validated through numerical simulations, whose results are reported in this paper

    Quality of service based data-aware scheduling

    Get PDF
    Distributed supercomputers have been widely used for solving complex computational problems and modeling complex phenomena such as black holes, the environment, supply-chain economics, etc. In this work we analyze the use of these distributed supercomputers for time sensitive data-driven applications. We present the scheduling challenges involved in running deadline sensitive applications on shared distributed supercomputers running large parallel jobs and introduce a ``data-aware\u27\u27 scheduling paradigm that overcomes these challenges by making use of Quality of Service classes for running applications on shared resources. We evaluate the new data-aware scheduling paradigm using an event-driven hurricane simulation framework which attempts to run various simulations modeling storm surge, wave height, etc. in a timely fashion to be used by first responders and emergency officials. We further generalize the work and demonstrate with examples how data-aware computing can be used in other applications with similar requirements

    Self-adaptive and sensitivity-aware QoS modeling for the cloud

    Get PDF
    Given the elasticity, dynamicity and on-demand nature of the cloud, cloud-based applications require dynamic models for Quality of Service (QoS), especially when the sensitivity of QoS tends to fluctuate at runtime. These models can be autonomically used by the cloud-based application to correctly self-adapt its QoS provision. We present a novel dynamic and self-adaptive sensitivity-aware QoS modeling approach, which is fine-grained and grounded on sound machine learning techniques. In particular, we combine symmetric uncertainty with two training techniques: Auto-Regressive Moving Average with eXogenous inputs model (ARMAX) and Artificial Neural Network (ANN) to reach two formulations of the model. We describe a middleware for implementing the approach. We experimentally evaluate the effectiveness of our models using the RUBiS benchmark and the FIFA 1998 workload trends. The results show that our modeling approach is effective and the resulting models produce better accuracy when compared with conventional models

    Online QoS Modeling in the Cloud: A Hybrid and Adaptive Multi-Learners Approach

    Full text link
    Given the on-demand nature of cloud computing, managing cloud-based services requires accurate modeling for the correlation between their Quality of Service (QoS) and cloud configurations/resources. The resulted models need to cope with the dynamic fluctuation of QoS sensitivity and interference. However, existing QoS modeling in the cloud are limited in terms of both accuracy and applicability due to their static and semi- dynamic nature. In this paper, we present a fully dynamic multi- learners approach for automated and online QoS modeling in the cloud. We contribute to a hybrid learners solution, which improves accuracy while keeping model complexity adequate. To determine the inputs of QoS model at runtime, we partition the inputs space into two sub-spaces, each of which applies different symmetric uncertainty based selection techniques, and we then combine the sub-spaces results. The learners are also adaptive; they simultaneously allow several machine learning algorithms to model QoS function and dynamically select the best model for prediction on the fly. We experimentally evaluate our models using RUBiS benchmark and realistic FIFA 98 workload. The results show that our multi-learners approach is more accurate and effective in contrast to the other state-of-the-art approaches.Comment: In the proceeding of the 7th IEEE/ACM International Conference on Utility and Cloud Computing (UCC), London, UK, 201

    Self-adaptive and online QoS modeling for cloud-based software services

    Get PDF
    In the presence of scale, dynamism, uncertainty and elasticity, cloud software engineers faces several challenges when modeling Quality of Service (QoS) for cloud-based software services. These challenges can be best managed through self-adaptivity because engineers' intervention is difficult, if not impossible, given the dynamic and uncertain QoS sensitivity to the environment and control knobs in the cloud. This is especially true for the shared infrastructure of cloud, where unexpected interference can be caused by co-located software services running on the same virtual machine; and co-hosted virtual machines within the same physical machine. In this paper, we describe the related challenges and present a fully dynamic, self-adaptive and online QoS modeling approach, which grounds on sound information theory and machine learning algorithms, to create QoS model that is capable to predict the QoS value as output over time by using the information on environmental conditions, control knobs and interference as inputs. In particular, we report on in-depth analysis on the correlations of selected inputs to the accuracy of QoS model in cloud. To dynamically selects inputs to the models at runtime and tune accuracy, we design self-adaptive hybrid dual-learners that partition the possible inputs space into two sub-spaces, each of which applies different symmetric uncertainty based selection techniques; the results of sub-spaces are then combined. Subsequently, we propose the use of adaptive multi-learners for building the model. These learners simultaneously allow several learning algorithms to model the QoS function, permitting the capability for dynamically selecting the best model for prediction on the fly. We experimentally evaluate our models in the cloud environment using RUBiS benchmark and realistic FIFA 98 workload. The results show that our approach is more accurate and effective than state-of-the-art modelings
    • …
    corecore