26,017 research outputs found

    The Uniform World Model: A Methodology for Predicting the Health Impacts of Air Pollution

    Get PDF
    Throughout history, technological development and economic growth has led to greater prosperity and overall standard of living for many people in society. However, along with the benefits of economic development comes the social responsibility of minimizing the mortality and morbidity health impacts associated with human activities, safeguarding ecosystems, protecting world cultural heritage and preventing integrity and amenity losses of man-made environments. Effects are often irreversible, extend way beyond national borders and can occur over a long time lag. At current pollutant levels, the monetized impacts carry a significant burden to society, on the order of few percent of a country’s GDP, and upwards to 10% of GDP for countries in transition. A recent study for the European Union found that the aggregate damage burden from industrial air pollution alone costs every man, woman and child between 200 and 330 € a year, of which CO2 emissions contributed 40 to 60% (EEA 2011). In a sustainable world, an assessment of the environmental impacts (and damage costs) imposed by man\'s decisions on present and future generations is necessary when addressing the cost effectiveness of local and national policy options that aim at improving air quality and reducing greenhouse gas emissions. The aim of this paper is to present a methodology for calculating such adverse public health outcomes arising from exposure to routine atmospheric pollutant emissions using a simplified methodology, referred to as the Uniform World Model (UWM). The UWM clearly identifies the most relevant factors of the analysis, is easy to implement and requires only a few key input parameters that are easily obtained by the analyst, even to someone living in a developing country. The UWM is exact in the limit all parameters are uniformly distributed, due to mass conservation. The current approach can be applied to elevated and mobile sources. Its robustness has been validated (typical deviations are well within the ±50% range) by comparison with much more detailed air quality and environmental impact assessment models, such as ISC3, CALPUFF, EMEP and GAINS. Several comparisons illustrating the wide range of applicability of the UWM are presented in the paper, including estimation of mean concentrations at the local, country and continental level and calculation of local and country level intake factors and marginal damage costs of primary particulate matter and inorganic secondary aerosols. Relationships are also provided for computing spatial concentration profiles and cumulative impact or damage cost distributions. Assessments cover sources located in the USA, Europe, East Asia (China) and South Asia (India).Air Pollution, Urban Air Quality, Particulate Matter, Air Quality Modeling, Health Impact Assessment, Loss of Life Expectancy, Damage Costs of Air Pollution

    Towards a real-time microscopic emissions model

    Get PDF
    This article presents a new approach to microscopic road traffic exhaust emission modelling. The model described uses data from the SCOOT demand-responsive traffic control system implemented in over 170 cities across the world. Estimates of vehicle speed and classification are made using data from inductive detector loops located on every SCOOT link. This data feeds into a microscopic traffic model to enable enhanced modelling of the driving modes of vehicles (acceleration, deceleration, idling and cruising). Estimates of carbon monoxide emissions are made by applying emission factors from an extensive literature review. A critical appraisal of the development and validation of the model is given before the model is applied to a study of the impact of high emitting vehicles. The article concludes with a discussion of the requirements for the future development and benefits of the application of such a model

    The Benefits of Reduced Air Pollutants in the U.S. from Greenhouse Gas Mitigation Policies

    Get PDF
    Policies that reduce emissions of greenhouse gases can simultaneously alter emissions of conventional pollutants that have deleterious effects on human health and the environment. This paper first describes how these "ancillary" benefits—benefits in addition to reduced risks of climate change—can result from greenhouse gas (GHG) mitigation efforts. It then discusses methodologies for assessing ancillary benefits and provides a critical review of estimates associated with reductions of criteria air pollutants. We find that these benefits in the U.S. may be significant, indicating a higher level of "no regrets" greenhouse gas abatement than might be expected based on simple economic calculations of abatement cost. However, the magnitude of ancillary benefits realized by any program of GHG mitigation is highly dependent on the location, pollutant, degree of exposure, and the economic behavior of individuals in response to the program. It is also highly dependent on the interaction of GHG abatement policies with the policies used for regulating conventional pollutants. We identify a rule of thumb to suggest ancillary benefits could be on the order of 30 percent of the incremental cost of GHG mitigation. For modest carbon reduction that do not result in changes in emissions of sulfur dioxide by electric utilities, ancillary benefits may be as high as $7 per ton. Greater benefits could be obtained with larger GHG reductions, although the costs of abatement would also be much greater.

    A cost-benefit analysis of a pellet boiler with electrostatic precipitator versus conventional biomass technology: A case study of an institutional boiler in Syracuse, New York

    Full text link
    BACKGROUND: Biomass facilities have received increasing attention as a strategy to increase the use of renewable fuels and decrease greenhouse gas emissions from the electric generation and heating sectors, but these facilities can potentially increase local air pollution and associated health effects. Comparing the economic costs and public health benefits of alternative biomass fuel, heating technology, and pollution control technology options provides decision-makers with the necessary information to make optimal choices in a given location. METHODS: For a case study of a combined heat and power biomass facility in Syracuse, New York, we used stack testing to estimate emissions of fine particulate matter (PM2.5) for both the deployed technology (staged combustion pellet boiler with an electrostatic precipitator) and a conventional alternative (wood chip stoker boiler with a multicyclone). We used the atmospheric dispersion model AERMOD to calculate the contribution of either fuel-technology configuration to ambient primary PM2.5 in a 10 km x 10 km region surrounding the facility, and we quantified the incremental contribution to population mortality and morbidity. We assigned economic values to health outcomes and compared the health benefits of the lower-emitting technology with the incremental costs. RESULTS: In total, the incremental annualized cost of the lower-emitting pellet boiler was 190,000greater,drivenbyagreatercostofthepelletfuelandpollutioncontroltechnology,offsetinpartbyreducedfuelstoragecosts.PM2.5emissionswereafactorof23lowerwiththepelletboilerwithelectrostaticprecipitator,withcorrespondingdifferencesincontributionstoambientprimaryPM2.5concentrations.Themonetaryvalueofthepublichealthbenefitsofselectingthepellet−firedboilertechnologywithelectrostaticprecipitatorwas190,000 greater, driven by a greater cost of the pellet fuel and pollution control technology, offset in part by reduced fuel storage costs. PM2.5 emissions were a factor of 23 lower with the pellet boiler with electrostatic precipitator, with corresponding differences in contributions to ambient primary PM2.5 concentrations. The monetary value of the public health benefits of selecting the pellet-fired boiler technology with electrostatic precipitator was 1.7 million annually, greatly exceeding the differential costs even when accounting for uncertainties. Our analyses also showed complex spatial patterns of health benefits given non-uniform age distributions and air pollution levels. CONCLUSIONS: The incremental investment in a lower-emitting staged combustion pellet boiler with an electrostatic precipitator was well justified by the population health improvements over the conventional wood chip technology with a multicyclone, even given the focus on only primary PM2.5 within a small spatial domain. Our analytical framework could be generalized to other settings to inform optimal strategies for proposed new facilities or populations.This research was supported by the New York State Energy Research and Development Authority (NYSERDA), via an award to the Northeast States for Coordinated Air Use Management (Agreement #92229). The SCICHEM work of KMZ was supported by the Electric Power Research Institute (EPRI)
    • …
    corecore