3,032 research outputs found

    Modeling and Engineering Constrained Shortest Path Algorithms for Battery Electric Vehicles

    Get PDF
    We study the problem of computing constrained shortest paths for battery electric vehicles. Since battery capacities are limited, fastest routes are often infeasible. Instead, users are interested in fast routes where the energy consumption does not exceed the battery capacity. For that, drivers can deliberately reduce speed to save energy. Hence, route planning should provide both path and speed recommendations. To tackle the resulting NP-hard optimization problem, previous work trades correctness or accuracy of the underlying model for practical running times. In this work, we present a novel framework to compute optimal constrained shortest paths for electric vehicles that uses more realistic physical models, while taking speed adaptation into account. Careful algorithm engineering makes the approach practical even on large, realistic road networks: We compute optimal solutions in less than a second for typical battery capacities, matching performance of previous inexact methods. For even faster performance, the approach can easily be extended with heuristics that provide high quality solutions within milliseconds

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Optimal Routing of Energy-aware Vehicles in Networks with Inhomogeneous Charging Nodes

    Full text link
    We study the routing problem for vehicles with limited energy through a network of inhomogeneous charging nodes. This is substantially more complicated than the homogeneous node case studied in [1]. We seek to minimize the total elapsed time for vehicles to reach their destinations considering both traveling and recharging times at nodes when the vehicles do not have adequate energy for the entire journey. We study two versions of the problem. In the single vehicle routing problem, we formulate a mixed-integer nonlinear programming (MINLP) problem and show that it can be reduced to a lower dimensionality problem by exploiting properties of an optimal solution. We also obtain a Linear Programming (LP) formulation allowing us to decompose it into two simpler problems yielding near-optimal solutions. For a multi-vehicle problem, where traffic congestion effects are included, we use a similar approach by grouping vehicles into "subflows". We also provide an alternative flow optimization formulation leading to a computationally simpler problem solution with minimal loss in accuracy. Numerical results are included to illustrate these approaches.Comment: To appear in proceeding of 22nd Mediterranean Conference on Control and Automation, MED'1

    Minimum cost path problem for Plug-in Hybrid Electric Vehicles

    Get PDF
    Cataloged from PDF version of article.We introduce a practically important and theoretically challenging problem: finding the minimum cost path for plug-in hybrid electric vehicles (PHEVs) in a network with refueling and battery switching stations, considering electricity and gasoline as sources of energy with different cost structures and limitations. We show that this problem is NP-complete even though its electric vehicle and conventional vehicle special cases are polynomially solvable. We propose three solution techniques: (1) a mixed integer quadratically constrained program that incorporates non-fuel costs such as vehicle depreciation, battery degradation and stopping, (2) a dynamic programming based heuristic and (3) a shortest path heuristic. We conduct extensive computational experiments using both real world road network data and artificially generated road networks of various sizes and provide signifi- cant insights about the effects of driver preferences and the availability of battery switching stations on the PHEV economics. In particular, our findings show that increasing the number of battery switching stations may not be enough to overcome the range anxiety of the drivers

    New logistical issues in using electric vehicle fleets with battery exchange infrastructure

    Get PDF
    AbstractThere is much reason to believe that fleets of service vehicles of many organizations will transform their vehicles that utilize alternative fuels that are more sustainable. The electric vehicle (EV) is a good candidate for this transformation, especially which “refuels” by exchanging its spent batteries with charged ones. This paper discusses some new logistical issues that must be addressed by such EV fleets, principally the issues related to the limited driving range of each EV's set of charged batteries and the possible detouring for battery exchanges. In particular, the paper addresses (1) the routing and scheduling of the fleet, (2) the locations of battery-exchange stations, and (3) the sizing of each facility. An overview of the literature on the topic is provided and some initial results are presented
    • …
    corecore