1,093 research outputs found

    Stochastic Geometry Modeling and Analysis of Single- and Multi-Cluster Wireless Networks

    Full text link
    This paper develops a stochastic geometry-based approach for the modeling and analysis of single- and multi-cluster wireless networks. We first define finite homogeneous Poisson point processes to model the number and locations of the transmitters in a confined region as a single-cluster wireless network. We study the coverage probability for a reference receiver for two strategies; closest-selection, where the receiver is served by the closest transmitter among all transmitters, and uniform-selection, where the serving transmitter is selected randomly with uniform distribution. Second, using Matern cluster processes, we extend our model and analysis to multi-cluster wireless networks. Here, the receivers are modeled in two types, namely, closed- and open-access. Closed-access receivers are distributed around the cluster centers of the transmitters according to a symmetric normal distribution and can be served only by the transmitters of their corresponding clusters. Open-access receivers, on the other hand, are placed independently of the transmitters and can be served by all transmitters. In all cases, the link distance distribution and the Laplace transform (LT) of the interference are derived. We also derive closed-form lower bounds on the LT of the interference for single-cluster wireless networks. The impact of different parameters on the performance is also investigated

    Characterizing Spatial Patterns of Base Stations in Cellular Networks

    Full text link
    The topology of base stations (BSs) in cellular networks, serving as a basis of networking performance analysis, is considered to be obviously distinctive with the traditional hexagonal grid or square lattice model, thus stimulating a fundamental rethinking. Recently, stochastic geometry based models, especially the Poisson point process (PPP), attracts an ever-increasing popularity in modeling BS deployment of cellular networks due to its merits of tractability and capability for capturing nonuniformity. In this study, a detailed comparison between common stochastic models and real BS locations is performed. Results indicate that the PPP fails to precisely characterize either urban or rural BS deployment. Furthermore, the topology of real data in both regions are examined and distinguished by statistical methods according to the point interaction trends they exhibit. By comparing the corresponding real data with aggregative point process models as well as repulsive point process models, we verify that the capacity-centric deployment in urban areas can be modeled by typical aggregative processes such as the Matern cluster process, while the coverage-centric deployment in rural areas can be modeled by representativ
    • …
    corecore