1,057 research outputs found

    Review of Intelligent Control Systems with Robotics

    Get PDF
    Interactive between human and robot assumes a significant job in improving the productivity of the instrument in mechanical technology. Numerous intricate undertakings are cultivated continuously via self-sufficient versatile robots. Current automated control frameworks have upset the creation business, making them very adaptable and simple to utilize. This paper examines current and up and coming sorts of control frameworks and their execution in mechanical technology, and the job of AI in apply autonomy. It additionally expects to reveal insight into the different issues around the control frameworks and the various approaches to fix them. It additionally proposes the basics of apply autonomy control frameworks and various kinds of mechanical technology control frameworks. Each kind of control framework has its upsides and downsides which are talked about in this paper. Another kind of robot control framework that upgrades and difficulties the pursuit stage is man-made brainpower. A portion of the speculations utilized in man-made reasoning, for example, Artificial Intelligence (AI) such as fuzzy logic, neural network and genetic algorithm, are itemized in this paper. At long last, a portion of the joint efforts between mechanical autonomy, people, and innovation were referenced. Human coordinated effort, for example, Kinect signal acknowledgment utilized in games and versatile upper-arm-based robots utilized in the clinical field for individuals with inabilities. Later on, it is normal that the significance of different sensors will build, accordingly expanding the knowledge and activity of the robot in a modern domai

    MODELLING AND CONTROL OF MULTI-FINGERED ROBOT HAND USING INTELLIGENT TECHNIQUES

    Get PDF
    Research and development of robust multi-fingered robot hand (MFRH) have been going on for more than three decades. Yet few can be found in an industrial application. The difficulties stem from many factors, one of which is that the lack of general and effective control techniques for the manipulation of robot hand. In this research, a MFRH with five fingers has been proposed with intelligent control algorithms. Initially, mathematical modeling for the proposed MFRH has been derived to find the Forward Kinematic, Inverse Kinematic, Jacobian, Dynamics and the plant model. Thereafter, simulation of the MFRH using PID controller, Fuzzy Logic Controller, Fuzzy-PID controller and PID-PSO controller has been carried out to gauge the system performance based parameters such rise time, settling time and percent overshoot

    Study of Motion Control of A Flexible Link

    Get PDF
    20th century has witnessed massive upsurge in the use of manipulators in several industries especially in space, defense, and medical industries. Among the types of manipulators used, single link manipulators are the most widely used. A single link robotic manipulator is nothing but a link controlled by an actuator to carry out a particular function such as placing a payload from point A to point B. For low power requirements single link manipulators are made up of light weight materials which require flexibility considerations.Flexibility makes the dynamics of the link heavily non-linear which induces vibrations and overshoot. In this project initially the dynamic model of rigid flexible manipulator is explained, then the state space model of the manipulator system is incorporated into MATLAB. The link flexibility is studied by a single beam FEmodel, where expressions for kinetic and potential energyare employed to derive the torqueequation.The 3 flexible link equations are coupled in terms of 3 variables, θ, Ø and v. The tip angle is finally given aslvfor flexible case whereas for the rigid manipulator the tip angle is same as the hub angle θ. Thereforeaccurate computation of v is very important. The joint flexibility is excluded from analysis.Several comparisons were made between the rigid and flexible link for torque requirement. The relation between the trajectory and hub angle is also plotted in a graph.Finally a PD controller taking the errors and its derivative is designed based on the rigid link dynamics

    Distributed importance-based fuzzy logic controllers for flexible link manipulators

    Full text link
    This research studies the design and tuning of the distributed importance-based fuzzy logic controllers (FLCs) for two dynamic systems: a single-link flexible manipulator and a two-link rigid-flexible manipulator. The importance analysis algorithm is introduced in the structure design of a FLC. The fuzzy rules for the former system are written based on observing the system behaviors. The fuzzy rules for the latter are selected to mimic the performance of the comparable linear controllers. A Modified Nelder and Mead Simplex Algorithm is used to tune the parameters of the membership functions in the distributed importance-based FLC. The tuned distributed importance-based FLC for the single-link flexible manipulator is compared with a linear quadratic regulator and the tuned distributed PD-like FLC. Similarly, the tuned distributed importance-based FLC for the two-link rigid-flexible manipulator is compared with the tuned importance-based linear controller and the tuned distributed PD-like FLC. The robustness of each tuned controller is tested under different conditions

    Performance Comparison of Several Control Algorithms for Tracking Control of Pantograph Mechanism

    Get PDF
    A sort of parallel manipulator known as a pantograph robot mechanism was created primarily for industrial requests that required high precision and satisfied speed. While tracking a chosen trajectory profile requires a powerful controller. Because it has four active robot links and one robot passive link in place of just two links like the open chain does, it can carry more loads than the open chain robot mechanism while maintaining accuracy and stability. The calculated model for a closed chain pantograph robot mechanism presented in this paper takes into account the boundary conditions. For the purpose of simulating the dynamics of the pantograph robot mechanism, an entire MATLAB Simulink has been created. The related Simscape model had been created to verify the pantograph mathematical model that had been provided. Five alternative tracking controllers were also created and improved using the Flower Pollination (FP) algorithm. The PID controller, which is used in many engineering applications, is the first control. An enriched Fractional Order PID (FOPID) controller is the second control. The third control considers an improved Nonlinear conventional PID (NLPID) controller, and the parameters for this controller were likewise determined using (FP) optimization using the useful objective function. Model Reference Adaptive Control (MRAC) with PID Compensator is the fourth control. The Fuzzy PD+I Control is the last and final controller. A comparison of the different control methods was completed. A rectangular trajectory was chosen as the end effector of the pantograph robot\u27s position reference because it displays performance during sharp edges and provides a more accurate study. The proposed controllers were used for this task to analyse the performance. The outcomes demonstrate that the Fuzzy PD+I control outperforms the PID, FOPID, NLPID, and MRAC with PID Compensator controllers in terms of performance. In the case of the Fuzzy PD+I control, the angles end effector has a lower rise time, a satisfied settling time, and low overshoot with good precision

    A novel hybrid bacteria-chemotaxis spiral-dynamic algorithm with application to modelling of flexible systems

    Get PDF
    This paper presents a novel hybrid optimisation algorithm namely HBCSD, which synergises a bacterial foraging algorithm (BFA) and spiral dynamics algorithm (SDA). The main objective of this strategy is to develop an algorithm that is capable to reach a global optimum point at the end of the final solution with a faster convergence speed compared to its predecessor algorithms. The BFA is incorporated into the algorithm to act as a global search or exploration phase. The solutions from the exploration phase then feed into SDA, which acts as a local search or exploitation phase. The proposed algorithm is used in dynamic modelling of two types of flexible systems, namely a flexible robot manipulator and a twin rotor system. The results obtained show that the proposed algorithm outperforms its predecessor algorithms in terms of fitness accuracy, convergence speed, and time-domain and frequency-domain dynamic characterisation of the two flexible systems. © 2014 Elsevier Ltd

    Concurrent Engineering of Robot Manipulators

    Get PDF

    Vibration observation for a translational flexible-link manipulator based on improved Luenberger observer

    Get PDF
    The residual vibration is a very universal problem in flexible manipulators which are widely used in robot technology. This paper focuses on the soft measurement of the vibration signals for a translational flexible-link manipulator (TFLM) system. A vibration observer based on the improved Luenberger observer, which only requires the practical measurement values of the boundary positions, is designed to obtain the vibration signals of the TFLM. The main contribution of the vibration observer is its ability to simplify system structure and get the vibration signals of any point of the TFLM which is unrealistic by infinite sensors in practice. Furthermore, the improved part of the Luenberger observer is the added feedback coefficients for the tip vibration signals which can correct the observed mode and reduce the observation error markedly. And according to the stable conditions of observer, the added feedback coefficients are designed by Lyapunov technique and multiple population genetic algorithms (MPGA). Finally, the efficiency of the designed vibration observer is verified by combined-simulation
    corecore