492 research outputs found

    Design and optimal springs stiffness estimation of a Modular OmniCrawler in-pipe climbing Robot

    Full text link
    This paper discusses the design of a novel compliant in-pipe climbing modular robot for small diameter pipes. The robot consists of a kinematic chain of 3 OmniCrawler modules with a link connected in between 2 adjacent modules via compliant joints. While the tank-like crawler mechanism provides good traction on low friction surfaces, its circular cross-section makes it holonomic. The holonomic motion assists it to re-align in a direction to avoid obstacles during motion as well as overcome turns with a minimal energy posture. Additionally, the modularity enables it to negotiate T-junction without motion singularity. The compliance is realized using 4 torsion springs incorporated in joints joining 3 modules with 2 links. For a desirable pipe diameter (\text{\O} 75mm), the springs' stiffness values are obtained by formulating a constraint optimization problem which has been simulated in ADAMS MSC and further validated on a real robot prototype. In order to negotiate smooth vertical bends and friction coefficient variations in pipes, the design was later modified by replacing springs with series elastic actuators (SEA) at 2 of the 4 joints.Comment: arXiv admin note: text overlap with arXiv:1704.0681

    Design of a Novel Long-Reach Cable-Driven Hyper-Redundant Snake-like Manipulator for Inspection and Maintenance

    Get PDF
    Robotic inspection and maintenance are gaining importance due to the number of different scenarios in which robots can operate. The use of robotic systems to accomplish such tasks has deep implications in terms of safety for human workers and can significantly extend the life of infrastructures and industrial facilities. In this context, long-reach cable-driven hyper-redundant robots can be employed to inspect areas that are difficult to reach and hazardous environments such as tanks and vessels. This paper presents a novel long-reach cable-driven hyper-redundant robot called SLIM (Snake-Like manipulator for Inspection and Maintenance). SLIM consists of a robotic arm, a pan and tilt mechanism as end-effector, and an actuation box that can rotate and around which the arm can wrap. The robot has a total of 15 degrees of freedom and, therefore, for the task of positioning the tool centre point in a bi-dimensional Cartesian space with a specific attitude, it has 10 degrees of redundancy. The robot is designed to operate in harsh environments and high temperatures and can deploy itself up to about 4.8 m. This paper presents the requirements that drove the design of the robot, the main aspects of the mechanical and electronic systems, the control strategy, and the results of preliminary experimental tests performed with a physical prototype to evaluate the robot performances

    Approximate Path-Tracking Control of Snake Robot Joints With Switching Constraints

    Get PDF
    This paper presents an approximate path-tracking control method for all joints of a snake robot, along with the verification of this method by simulations and experiments. We consider a wheeled snake robot that has passive wheels and active joints. The robot can switch the wheels that touch the ground by lifting the required parts of its body. The model of the robot becomes a kinematically redundant system if certain wheels are lifted. Using this kinematic redundancy, and selecting the appropriate lifted parts, we design a controller for approximate path tracking. Simulations and experimental results show that the proposed controller effectively reduces the path-tracking error for all joints of the snake robot

    Kinematics and Robot Design I, KaRD2018

    Get PDF
    This volume collects the papers published on the Special Issue “Kinematics and Robot Design I, KaRD2018” (https://www.mdpi.com/journal/robotics/special_issues/KARD), which is the first issue of the KaRD Special Issue series, hosted by the open access journal “MDPI Robotics”. The KaRD series aims at creating an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2018 received 22 papers and, after the peer-review process, accepted only 14 papers. The accepted papers cover some theoretical and many design/applicative aspects

    Mechanical Design and Dynamic Analysis of Pipe Crawling Robot for Internal Gas Pipeline Inspection

    Get PDF
    Pipelines play an important role in terms of transporting various types of fluid like liquid and gas. They are mainly used not only in small applications like housing area, but also in large industrial field like in an oil and gas field. Maintenance of these pipelines is crucial and the cost of doing it continues to increase from time to time and thus a new approach is needed in order to tackle these problems. This project report presents the design and development of crawling robots for internal pipe inspection. There are four designs being considered but this paper will present the simplest of the design which is the wheeled type design that with a pantograph mechanism with a sliding base that allows folding and unfolding of the robot’s legs. The mechanism of this robot is based on the design of MRINSPECT III and the driving mechanism of MRINSPECT IV. The robot is designed accordingly so that it can function through a pipeline ranging from 6 inches diameter to 10 inches diameter. The design is then modeled and simulated using AutoCAD and ADAMS respectively

    A hyper-redundant manipulator

    Get PDF
    “Hyper-redundant” manipulators have a very large number of actuatable degrees of freedom. The benefits of hyper-redundant robots include the ability to avoid obstacles, increased robustness with respect to mechanical failure, and the ability to perform new forms of robot locomotion and grasping. The authors examine hyper-redundant manipulator design criteria and the physical implementation of one particular design: a variable geometry truss
    • …
    corecore