676 research outputs found

    Wheelchair Tire Change

    Get PDF
    This project consists of a rear wheel wheelchair lift to be designed and created by a Cal Poly senior project team. This project was created for injured veteran Ms. Landeen who has the trouble of tracking mud into her house because of dirty wheelchair tires. The project was presented by the non-profit organization The Quality of Life Plus (QL+) Program. Much like when you remove your shoes coming into your home, Ms. Landeen needs a way to exchange her outdoor wheels for her clean indoor wheels. The expected outcome of this project is a fully functioning device that will safely and effectively allow Ms. Landeen to independently change her tires. The following report details the problem given, background research on current products, initial analysis to define the problem, the ideation process performed by the team, concept and prototype designs, design iteration, manufacturing, design verification, and testing of the final design prototype

    Forward and backward motion control of wheelchair on two wheels

    Get PDF
    The challenge in designing wheelchair on two wheels involves the design and implementation of suitable control strategies for a two wheeled wheelchair to perform comparably similar to a normal four wheeled wheelchair. It is important to note that a wheelchair on two wheels is expected not to take much space during mobility as compared to when it is on four wheels. Moreover, disabled people are encouraged and expected to perform most activities that others can do and hence lead an independent life. Thus, wheelchairs on two wheels are needed for disabled persons to perform some of the essential tasks in their living and work environments. In this research a model of the standard wheelchair is developed as a test and verification platform using Visual Nastran software. Novel fuzzy logic control strategies are designed for lifting up the chair transforming a four-wheeled wheelchair to a two-wheeled wheelchair) and maintaining stability and balance while on two wheels. Furthermore, position control for forward and backward mobility of the wheelchair on two wheels is developed using fuzzy logic control. Simulation results of the proposed control strategy are presented and discussed

    Modelling and control of a wheelchair on two wheels

    Get PDF
    Wheelchairs on two wheels are needed for disabled persons to perform some of the essential tasks in their living and work environments. In fact it offers great advantages and efficiency for the user. Besides allowing a disabled to lead independent life, it is expected not to take much space during mobility as compared to when it is on four wheels and thus a wheelchair on two wheels has associated design and development challenges. These include modelling and controller design for the system to perform comparably similar to normal four-wheeled wheelchair. In this paper physical model of a wheelchair on two wheels that mimics double inverted pendulum is designed and a novel fuzzy logic control mechanism is developed and tested with control of the two-wheeled wheelchair

    Biomechanical evaluation of patient transfers

    Get PDF
    The purpose of this study is to identify the problem encountered when a patient with limited strength and mobility needs assistance in transferring from a wheelchair to another location. This study took advantage of ergonomic techniques to isolate the source of stress, and limited these stresses according to the standards of the National Institute of Safety and Health Administration. A device was developed whereby the stresses of a patient transfer were eliminated. By using a conventional wheelchair and a recliner as a starting point, effectively combining these components into a single multifunctional unit the goal of reducing stress was achieved. The design allowed people with limited strength and mobility to transfer more independently, reducing the amount of assistance necessary from a caregiver. This design means a safer transfer for patient and caregiver

    Stabilizing control of two-wheeled wheelchair with movable payload using optimized interval type-2 fuzzy logic

    Get PDF
    The control schemes of a wheelchair having two wheels with movable payload utilizing the concept of a double-link inverted pendulum have been investigated in this article. The proposed wheelchair has been simulated using SimWise 4D software considering the most efficient parameters. These parameters are extracted using the spiral dynamic algorithm while being controlled with interval type-2 fuzzy logic controller (IT2FLC). The robustness and stability of the implemented controller are assessed under different situations including standing upright, forward motion and application of varying directions and magnitudes of outer disturbances to movable (up and down) system payload. It is shown that the two-wheeled wheelchair adopted by the newly introduced controller has achieved a 94% drop in torque for both Link1 and Link2 and more than 98% fall in distance travelled in comparison with fuzzy logic control type-1 (FLCT1) controller employed in an earlier design. The present study has further considered the increased nonlinearity and complexity of the additional moving payload. From the outcome of this study, it is obvious that the proposed IT2FLC-spiral dynamic algorithm demonstrates better performance than FLCT1 to manage the uncertainties and nonlinearities in case of a movable payload two-wheel wheelchair system

    Vehicle Wheelchair Storage Final Design Report

    Get PDF
    Many people who use wheelchairs are very active. They have errands to run and lives to live just like everybody else. For a busy person who uses a wheelchair there are currently no quick methods for storing and unloading your wheelchair from your vehicle that do not require expensive custom modifications which can ruin the resell value and the aesthetics of the vehicle. This has resulted in users hastily loading their wheelchairs which can cause damage to the wheelchair, the vehicle, and other passengers while the vehicle is in motion. The goal of this project was to develop a wheelchair storage system that can be installed in any vehicle and securely store any wheelchair during transportation. The device allows for a wheelchair to be quickly and compactly stored behind the driver’s seat. Hopefully by making this process quick and safe this device can improve the lives of many users

    Modelling and simulation of double-link scenario in a two-wheeled wheelchair

    Get PDF
    Wheelchairs on two wheels are essential part of life for disabled persons. But designing control strategies for these wheelchairs is a challenging task due to the fact that they are highly nonlinear and unstable systems. The subtle design of the system mimics the inverted pendulum with a double-link scenario. This forms an example of multi degree of freedom system where there are three actuators, one on each wheel, and one for position between the two links. The system starts to work with lifting the front wheels (casters) to the upright position and further on stabilizing in the upright position. The challenge resides in the design, modelling and control of the two-wheeled wheelchair to perform comparably similar to normal four-wheeled wheelchair. This paper is aimed to model the highly nonlinear and complex two-wheeled wheelchair system using two different approaches. A state-space model is obtained from the linearised mathematical model as an initial attempt for control design investigation. Then a complex visualized mathematical model is developed, which proves as a good technique for prediction and simulation of the two-wheeled wheelchair

    Nonlinear modeling of FES-supported standing-up in paraplegia for selection of feedback sensors

    Get PDF
    This paper presents analysis of the standing-up manoeuvre in paraplegia considering the body supportive forces as a potential feedback source in functional electrical stimulation (FES)-assisted standing-up. The analysis investigates the significance of arm, feet, and seat reaction signals to the human body center-of-mass (COM) trajectory reconstruction. The standing-up behavior of eight paraplegic subjects was analyzed, measuring the motion kinematics and reaction forces to provide the data for modeling. Two nonlinear empirical modeling methods are implemented-Gaussian process (GP) priors and multilayer perceptron artificial neural networks (ANN)-and their performance in vertical and horizontal COM component reconstruction is compared. As the input, ten sensory configurations that incorporated different number of sensors were evaluated trading off the modeling performance for variables chosen and ease-of-use in everyday application. For the purpose of evaluation, the root-mean-square difference was calculated between the model output and the kinematics-based COM trajectory. Results show that the force feedback in COM assessment in FES assisted standing-up is comparable alternative to the kinematics measurement systems. It was demonstrated that the GP provided better modeling performance, at higher computational cost. Moreover, on the basis of averaged results, the use of a sensory system incorporating a six-dimensional handle force sensor and an instrumented foot insole is recommended. The configuration is practical for realization and with the GP model achieves an average accuracy of COM estimation 16 /spl plusmn/ 1.8 mm in horizontal and 39 /spl plusmn/ 3.7 mm in vertical direction. Some other configurations analyzed in the study exhibit better modeling accuracy, but are less practical for everyday usage

    Simulation and control of multipurpose wheelchair for disabled/elderly mobility

    Get PDF
    © 2016 IOS Press and the author(s). This paper presents investigations into the development of modelling and control strategies for a multipurpose wheelchair as mobile transporter for elderly and disabled people. The research is aimed at helping people with physical weakness/disabilities in their upper and lower extremities to move independently without human intervention. A novel reconfiguration which allows multi-task operations in the same wheelchair system with improved design is modelled in Visual Nastran 4D (VN4D) software. A modular fuzzy logic control mechanism with integrated phases is introduced for the overall operations and two-wheeled stabilization of the wheelchair. It is shown that the proposed modular fuzzy control approach is able to ensure system stability while performing multipurpose tasks such as manoeuvrability on flat surfaces, stairs climbing (ascending and descending), standing in the upright position on two wheels and transformation back to standard four wheels with up to 50% less initial torque in comparison to previous designs
    corecore