15,009 research outputs found

    Aerial Robotics – Unmanned Aerial Vehicles in Interaction with the Environment

    Get PDF
    Defined as technology that provides services and facilitates the execution of tasks (such as observation, inspection, mapping, search and rescue, maintenance, etc.) by using unmanned aerial vehicles equipped with various sensors and actuators, aerial robotics in one of the fastest growing field in research as well as in the industry. While some of the services provided by aerial robots have already been put into practice (for example aerial inspection and aerial mapping), others (like aerial manipulation) are still at the level of laboratory experimentation on account of their complexity. The ability of an aerial robotic system to interact physically with objects within its surroundings completely transforms the way we view applications of unmanned aerial systems in near-Earth environments. This change in paradigm conveying such new functionalities as aerial tactile inspection; aerial repair, construction, and assembly; aerial agricultural care; and aerial urban sanitation requires an extension of current modeling and control techniques as well as the development of novel concepts. In this article we are giving a very brief introduction to the field of aerial robots

    Aerial Robotics – Unmanned Aerial Vehicles in Interaction with the Environment

    Get PDF
    Defined as technology that provides services and facilitates the execution of tasks (such as observation, inspection, mapping, search and rescue, maintenance, etc.) by using unmanned aerial vehicles equipped with various sensors and actuators, aerial robotics in one of the fastest growing field in research as well as in the industry. While some of the services provided by aerial robots have already been put into practice (for example aerial inspection and aerial mapping), others (like aerial manipulation) are still at the level of laboratory experimentation on account of their complexity. The ability of an aerial robotic system to interact physically with objects within its surroundings completely transforms the way we view applications of unmanned aerial systems in near-Earth environments. This change in paradigm conveying such new functionalities as aerial tactile inspection; aerial repair, construction, and assembly; aerial agricultural care; and aerial urban sanitation requires an extension of current modeling and control techniques as well as the development of novel concepts. In this article we are giving a very brief introduction to the field of aerial robots

    Automation and Control

    Get PDF
    Advances in automation and control today cover many areas of technology where human input is minimized. This book discusses numerous types and applications of automation and control. Chapters address topics such as building information modeling (BIM)–based automated code compliance checking (ACCC), control algorithms useful for military operations and video games, rescue competitions using unmanned aerial-ground robots, and stochastic control systems

    Coordinated motion of UGVs and a UAV

    Get PDF
    Coordination of autonomous mobile robots has received significant attention during the last two decades. Coordinated motion of heterogenous robot groups are more appealing due to the fact that unique advantages of different robots might be combined to increase the overall efficiency of the system. In this paper, a heterogeneous robot group composed of multiple Unmanned Ground Vehicles (UGVs) and an Unmanned Aerial Vehicle (UAV) collaborate in order to accomplish a predefined goal. UGVs follow a virtual leader which is defined as the projection of UAV’s position onto the horizontal plane. The UAV broadcasts its position at certain frequency. The position of the virtual leader and distances from the two closest neighbors are used to create linear and angular velocity references for each UGV. Several coordinated tasks have been presented and the results are verified by simulations where certain amount of communication delay between the vehicles is also considered. Results are quite promising

    Passive Compliance Control of Aerial Manipulators

    Get PDF
    This paper presents a passive compliance control for aerial manipulators to achieve stable environmental interactions. The main challenge is the absence of actuation along body-planar directions of the aerial vehicle which might be required during the interaction to preserve passivity. The controller proposed in this paper guarantees passivity of the manipulator through a proper choice of end-effector coordinates, and that of vehicle fuselage is guaranteed by exploiting time domain passivity technique. Simulation studies validate the proposed approach.Comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 201
    corecore