97 research outputs found

    Scalability study for robotic hand platform

    Get PDF
    The goal of this thesis project was to determine the lower limit of scale for the RIT robotic grasping hand. This was accomplished using a combination of computer simulation and experimental studies. A force analysis was conducted to determine the size of air muscles required to achieve appropriate contact forces at a smaller scale. Input variables, such as the actuation force and tendon return force, were determined experimentally. A dynamic computer model of the hand system was then created using Recurdyn. This was used to predict the contact (grasping) force of the fingers at full-scale, half-scale, and quarter-scale. Correlation between the computer model and physical testing was achieved for both a life-size and half-scale finger assembly. To further demonstrate the scalability of the hand design, both half and quarter-scale robotic hand rapid prototype assemblies were built using 3D printing techniques. This thesis work identified the point where further miniaturization would require a change in the manufacturing process to micro-fabrication. Several techniques were compared as potential methods for making a production intent quarter-scale robotic hand. Investment casting, Swiss machining, and Selective Laser Sintering were the manufacturing techniques considered. A quarter-scale robotic hand tested the limits of each technology. Below this scale, micro-machining would be required. The break point for the current actuation method, air muscles, was also explored. Below the quarter-scale, an alternative actuation method would also be required. Electroactive Polymers were discussed as an option for the micro-scale. In summary, a dynamic model of the RIT robotic grasping hand was created and validated as scalable at full and half-scales. The model was then used to predict finger contact forces at the quarter-scale. The quarter-scale was identified as the break point in terms of the current RIT robotic grasping hand based on both manufacturing and actuation. A novel, prototype quarter-scale robotic hand assembly was successfully built by an additive manufacturing process, a high resolution 3D printer. However, further miniaturization would require alternate manufacturing techniques and actuation mechanisms

    Workshop on "Robotic assembly of 3D MEMS".

    No full text
    Proceedings of a workshop proposed in IEEE IROS'2007.The increase of MEMS' functionalities often requires the integration of various technologies used for mechanical, optical and electronic subsystems in order to achieve a unique system. These different technologies have usually process incompatibilities and the whole microsystem can not be obtained monolithically and then requires microassembly steps. Microassembly of MEMS based on micrometric components is one of the most promising approaches to achieve high-performance MEMS. Moreover, microassembly also permits to develop suitable MEMS packaging as well as 3D components although microfabrication technologies are usually able to create 2D and "2.5D" components. The study of microassembly methods is consequently a high stake for MEMS technologies growth. Two approaches are currently developped for microassembly: self-assembly and robotic microassembly. In the first one, the assembly is highly parallel but the efficiency and the flexibility still stay low. The robotic approach has the potential to reach precise and reliable assembly with high flexibility. The proposed workshop focuses on this second approach and will take a bearing of the corresponding microrobotic issues. Beyond the microfabrication technologies, performing MEMS microassembly requires, micromanipulation strategies, microworld dynamics and attachment technologies. The design and the fabrication of the microrobot end-effectors as well as the assembled micro-parts require the use of microfabrication technologies. Moreover new micromanipulation strategies are necessary to handle and position micro-parts with sufficiently high accuracy during assembly. The dynamic behaviour of micrometric objects has also to be studied and controlled. Finally, after positioning the micro-part, attachment technologies are necessary

    Remote Access and Computerized User Control of Robotic Micromanipulators

    Get PDF
    Nano- and micromanipulators are critical research tools in numerous fields including micro-manufacturing and disease study. Despite their importance, nano- and micromanipulation systems remain inaccessible to many groups due to price and lack of portability. An intuitive and remotely accessible manipulation system helps mitigate this access problem. Previously, optimal control hardware for single-probe manipulation and the effect of latency on user performance were not well understood. Remote access demands full computerization; graphical user interfaces with networking capabilities were developed to fulfill this requirement and allow the use of numerous hardware controllers. Virtual environments were created to simulate the use of a manipulator with full parametric control and measurement capabilities. Users completed simulated tasks with each device and were surveyed about their perceptions. User performance with a commercial manipulator controller was exceeded by performance with both a computer mouse and pen tablet. Latency was imposed within the virtual environment to study it’s effects and establish guidelines as to which latency ranges are acceptable for long-range remote manipulation. User performance began to degrade noticeably at 100 ms and severely at 400 ms and performance with the mouse degraded the least as latency increased. A computer vision system for analyzing carbon nanotube arrays was developed so the computation time could be compared to acceptable system latency. The system characterizes the arrays to a high degree of accuracy and most of the measurement types of obtainable fast enough for real-time analysis

    Haptic feedback in teleoperation in Micro-and Nano-Worlds.

    No full text
    International audienceRobotic systems have been developed to handle very small objects, but their use remains complex and necessitates long-duration training. Simulators, such as molecular simulators, can provide access to large amounts of raw data, but only highly trained users can interpret the results of such systems. Haptic feedback in teleoperation, which provides force-feedback to an operator, appears to be a promising solution for interaction with such systems, as it allows intuitiveness and flexibility. However several issues arise while implementing teleoperation schemes at the micro-nanoscale, owing to complex force-fields that must be transmitted to users, and scaling differences between the haptic device and the manipulated objects. Major advances in such technology have been made in recent years. This chapter reviews the main systems in this area and highlights how some fundamental issues in teleoperation for micro- and nano-scale applications have been addressed. The chapter considers three types of teleoperation, including: (1) direct (manipulation of real objects); (2) virtual (use of simulators); and (3) augmented (combining real robotic systems and simulators). Remaining issues that must be addressed for further advances in teleoperation for micro-nanoworlds are also discussed, including: (1) comprehension of phenomena that dictate very small object (< 500 micrometers) behavior; and (2) design of intuitive 3-D manipulation systems. Design guidelines to realize an intuitive haptic feedback teleoperation system at the micro-nanoscale level are proposed

    Modeling and experimental validation of a parallel microrobot for biomanipulation

    Get PDF
    The main purpose of this project is the development of a commercial micropositioner's (SmarPod 115.25, SmarAct GmbH) geometrical model. SmarPod is characterized by parallel kinematics and is employed for precise and accurate sample's positioning under SEM microscope, being vacuum-compatible, for various applications. Geometrical modeling represents the preliminar step to fully understand, and possibly improve, robot's closed loop behaviour in terms of task's quality precision, when enterprises does not provide sufficient documentation. The robotic system, in fact, represents in this case a "black box" from which it's possible to extract information. This step is essential in order to improve, consequently, the reliability of bio-microsystem manipulation and characterization. Disposing of a detailed microrobot's model becomes essential to deal with the typical lack of sensing at microscale, as it allows a 3D precise and adequate reconstruction, realized through proper softwares, of the manipulation set-up. The roles of Virtual Reality (VR) and of simulations, carried out, in this case, in Blender environment, are asserted as well as an essential helping tool in mycrosystem's task planning. Blender is a professional free and open-source 3D computer graphics software and it is proven to be a basic instrument to validate microrobot's model, even to simplify it in case of complex system's geometries

    Applications of Micro/Nano Automation Technology in Detecting Cancer Cells for Personalized Medicine

    Full text link

    MICROCANTILEVER-BASED FORCE SENSING, CONTROL AND IMAGING

    Get PDF
    This dissertation presents a distributed-parameters base modeling framework for microcantilever (MC)-based force sensing and control with applications to nanomanipulation and imaging. Due to the widespread applications of MCs in nanoscale force sensing or atomic force microscopy with nano-Newton to pico-Newton force measurement requirements, precise modeling of the involved MCs is essential. Along this line, a distributed-parameters modeling framework is proposed which is followed by a modified robust controller with perturbation estimation to target the problem of delay in nanoscale imaging and manipulation. It is shown that the proposed nonlinear model-based controller can stabilize such nanomanipulation process in a very short time compared to available conventional methods. Such modeling and control development could pave the pathway towards MC-based manipulation and positioning. The first application of the MC-based (a piezoresistive MC) force sensors in this dissertation includes MC-based mass sensing with applications to biological species detection. MC-based sensing has recently attracted extensive interest in many chemical and biological applications due to its sensitivity, extreme applicability and low cost. By measuring the stiffness of MCs experimentally, the effect of adsorption of target molecules can be quantified. To measure MC\u27s stiffness, an in-house nanoscale force sensing setup is designed and fabricated which utilizes a piezoresistive MC to measure the force acting on the MC\u27s tip with nano-Newton resolution. In the second application, the proposed MC-based force sensor is utilized to achieve a fast-scan laser-free Atomic Force Microscopy (AFM). Tracking control of piezoelectric actuators in various applications including scanning probe microscopes is limited by sudden step discontinuities within time-varying continuous trajectories. For this, a switching control strategy is proposed for effective tracking of such discontinuous trajectories. A new spiral path planning is also proposed here which improves scanning rate of the AFM. Implementation of the proposed modeling and controller in a laser-free AFM setup yields high quality image of surfaces with stepped topographies at frequencies up to 30 Hz. As the last application of the MC-based force sensors, a nanomanipulator named here MM3A® is utilized for nanomanipulation purposes. The area of control and manipulation at the nanoscale has recently received widespread attention in different technologies such as fabricating electronic chipsets, testing and assembly of MEMS and NEMS, micro-injection and manipulation of chromosomes and genes. To overcome the lack of position sensor on this particular manipulator, a fused vision force feedback robust controller is proposed. The effects of utilization of the image and force feedbacks are individually discussed and analyzed for use in the developed fused vision force feedback control framework in order to achieve ultra precise positioning and optimal performance

    Design and realization of a microassembly workstation

    Get PDF
    With the miniaturization of products to the levels of micrometers and the recent developments in microsystem fabrication technologies, there is a great need for an assembly process for the formation of complex hybrid microsystems. Integration of microcomponents made up of different materials and manufactured using different micro fabrication techniques is still a primary challenge since some of the fundamental problems originating from the small size of parts to be manipulated, high precision necessity and specific problems of the microworld in that field are still not fully investigated. In this thesis, design and development of an open-architecture and reconfigurable microassembly workstation for efficient and reliable assembly of micromachined parts is presented. The workstation is designed to be used as a research tool for investigation of the problems in microassembly. The development of such a workstation includes the design of: (i) a manipulation system consisting of motion stages providing necessary travel range and precision for the realization of assembly tasks, (ii) a vision system to visualize the microworld and the determination of the position and orientation of micro components to be assembled, (iii) a robust control system and necessary fixtures for the end effectors that allow easy change of manipulation tools and make the system ready for the desired task. In addition tele-operated and semi-automated assembly concepts are implemented. The design is verified by implementing tasks in various ranges for micro-parts manipulation. The versatility of the workstation is demonstrated and high accuracy of positioning is shown

    A novel approach to micro-telemanipulation with soft slave robots: integrated design of a non-overshooting series elastic actuator

    Get PDF
    Micro mechanical devices are becoming ubiquitous as they find increas- ing uses in applications such as micro-fabrication, micro-surgery and micro- probing. Use of micro-electromechanical systems not only offer compactness and precision, but also increases the efficiency of processes. Whenever me- chanical devices are used to interact with the environment, accurate control of the forces arising at the interaction surfaces arise as an important chal- lenge. In this work, we propose using a series elastic actuation (SEA) for micro- manipulation. Since an SEA is an integrated mechatronic device, the me- chanical design and controller synthesis are handled in parallel to achieve the best overall performance. The mechanical design of the μSEA is handled in two steps: type selection and dimensional synthesis. In the type selection step, a compliant, half pantograph mechanism is chosen as the underlying kinematic structure of the coupling element. For optimal dimensioning, the bandwidth of the system, the disturbance response and the force resolution are considered to achieve good control performance with high reliability. These objectives are achieved by optimizing the manipulability and the stiffness of the mechanism along with a robustness constraint. In parallel with the mechanical design, a force controller is synthesized. The controller has a cascaded structure: an inner loop for position control and an outer loop for force control. Since excess force application can be detrimental during manipulation of fragile objects; the position controller of the inner loop is designed to be a non-overshooting controller which guar- antees the force response of the system always stay lower than the reference value. This self-standing μSEA system is embedded into a 3-channel scaled tele- operation architecture so that an operator can perform micro-telemanipulation. Constant scaling between the master and the slave is implemented and the teleoperator controllers preserve the non-overshooting nature of the μSEA. Finally, the designed μSEA based micro-telemanipulation system is im- plemented and characterized
    corecore