1,425 research outputs found

    Throughput Analysis of Primary and Secondary Networks in a Shared IEEE 802.11 System

    Full text link
    In this paper, we analyze the coexistence of a primary and a secondary (cognitive) network when both networks use the IEEE 802.11 based distributed coordination function for medium access control. Specifically, we consider the problem of channel capture by a secondary network that uses spectrum sensing to determine the availability of the channel, and its impact on the primary throughput. We integrate the notion of transmission slots in Bianchi's Markov model with the physical time slots, to derive the transmission probability of the secondary network as a function of its scan duration. This is used to obtain analytical expressions for the throughput achievable by the primary and secondary networks. Our analysis considers both saturated and unsaturated networks. By performing a numerical search, the secondary network parameters are selected to maximize its throughput for a given level of protection of the primary network throughput. The theoretical expressions are validated using extensive simulations carried out in the Network Simulator 2. Our results provide critical insights into the performance and robustness of different schemes for medium access by the secondary network. In particular, we find that the channel captures by the secondary network does not significantly impact the primary throughput, and that simply increasing the secondary contention window size is only marginally inferior to silent-period based methods in terms of its throughput performance.Comment: To appear in IEEE Transactions on Wireless Communication

    Self-Stabilizing TDMA Algorithms for Dynamic Wireless Ad-hoc Networks

    Get PDF
    In dynamic wireless ad-hoc networks (DynWANs), autonomous computing devices set up a network for the communication needs of the moment. These networks require the implementation of a medium access control (MAC) layer. We consider MAC protocols for DynWANs that need to be autonomous and robust as well as have high bandwidth utilization, high predictability degree of bandwidth allocation, and low communication delay in the presence of frequent topological changes to the communication network. Recent studies have shown that existing implementations cannot guarantee the necessary satisfaction of these timing requirements. We propose a self-stabilizing MAC algorithm for DynWANs that guarantees a short convergence period, and by that, it can facilitate the satisfaction of severe timing requirements, such as the above. Besides the contribution in the algorithmic front of research, we expect that our proposal can enable quicker adoption by practitioners and faster deployment of DynWANs that are subject changes in the network topology

    "Security at the Physical and MAC Layers in Wireless Networks"

    Get PDF

    The Impact of IEEE 802.11 Contention Window on The Performance of Transmission Control Protocol in Mobile Ad-Hoc Network

    Get PDF
    A Mobile Ad-hoc Network (MANET) is a group of nodes connected via ad-hoc fashion for communicating with each other through wireless interface. The communication among the nodes in such network take place by using multi-hop in the absence of fixed infrastructure. TCP faces some hurdles and complexities in multi-hop ad-hoc networks particularly congestion and route failures. The incompatibility between the MAC and TCP are previously noticed by the research community. This research study focuses on the impact of MAC layer contention window on TCP in MANET by using variation in network density and velocity of nodes respectively. Simulation has been carried out to quantify and analyze the impact of Contention Window (CW) sizes that affects the performance of TCP by using NS-2 simulator. The impact of CW is investigated on TCP in multi-hop networks by means of performance evaluation parameters i.e. average delay, average packet drops and average throughput

    Game theory framework for MAC parameter optimization in energy-delay constrained sensor networks

    Get PDF
    Optimizing energy consumption and end-to-end (e2e) packet delay in energy-constrained, delay-sensitive wireless sensor networks is a conflicting multiobjective optimization problem. We investigate the problem from a game theory perspective, where the two optimization objectives are considered as game players. The cost model of each player is mapped through a generalized optimization framework onto protocol-specific MAC parameters. From the optimization framework, a game is first defined by the Nash bargaining solution (NBS) to assure energy consumption and e2e delay balancing. Secondy, the Kalai-Smorodinsky bargaining solution (KSBS) is used to find an equal proportion of gain between players. Both methods offer a bargaining solution to the duty-cycle MAC protocol under different axioms. As a result, given the two performance requirements (i.e., the maximum latency tolerated by the application and the initial energy budget of nodes), the proposed framework allows to set tunable system parameters to reach a fair equilibrium point that dually minimizes the system latency and energy consumption. For illustration, this formulation is applied to six state-of-the-art wireless sensor network (WSN) MAC protocols: B-MAC, X-MAC, RI-MAC, SMAC, DMAC, and LMAC. The article shows the effectiveness and scalability of such a framework in optimizing protocol parameters that achieve a fair energy-delay performance trade-off under the application requirements

    Enhanced collision avoidance mechanisms for wireless sensor networks through high accuracy collision modeling

    Get PDF
    Wireless channel and multi-hop communications cause a significant number of packet collisions in Wireless Sensor Networks (WSNs). Although a collision may cause packet loss and reduce network performance, low-power wireless transceivers allow packet reception in the presence of collisions if at least one signal can provide a sufficiently high power compared with other signals. Therefore, with respect to the large number of nodes used in WSNs, which necessitates the use of simulation for protocol development, collisions should be addressed at two layers: First, collisions should be modeled at the physical layer through a high-accuracy packet reception algorithm that decides about packet reception in the presence of collisions. Second, collision avoidance mechanisms should be employed at the Medium Access Control (MAC) layer to reduce packet losses caused by collisions. Unfortunately, the existing packet reception algorithms exhibit low accuracy and impede the development of efficient collision avoidance mechanisms. From the collision avoidance perspective, existing contention-based MAC protocols do not provide reliable packet broadcasting, thereby affecting the initialization performance of WSNs. In addition, despite the benefits of schedule-based MAC protocols during the data-gathering phase, the existing mechanisms rely on unrealistic assumptions. The first major contribution of this work is CApture Modeling Algorithm (CAMA), which enables collision modeling with high accuracy and efficiency at the physical layer. The higher accuracy of CAMA against existing approaches is validated through extensive comparisons with empirical experiments. The second major contribution includes mechanisms that improve the reliability of packet broadcasting. In particular, adaptive contention window adjustment mechanisms and the Geowindow algorithm are proposed for collision avoidance during the initialization phases. These mechanisms considerably improve the accuracy of the initialization phases, without violating duration and energy efficiency requirements. As the third major contribution, a distributed and concurrent link-scheduling algorithm (called DICSA) is proposed for collision avoidance during the data-gathering phase. DICSA provides faster slot assignment, higher spatial reuse and lower energy consumption, compared with existing algorithms. Furthermore, evaluating DICSA within a MAC protocol confirms its higher throughput, higher delivery ratio, and lower end-to-end delay

    Design of Wireless Communication Networks for Cyber-Physical Systems with Application to Smart Grid

    Get PDF
    Cyber-Physical Systems (CPS) are the next generation of engineered systems in which computing, communication, and control technologies are tightly integrated. On one hand, CPS are generally large with components spatially distributed in physical world that has lots of dynamics; on the other hand, CPS are connected, and must be robust and responsive. Smart electric grid, smart transportation system are examples of emerging CPS that have significant and far-reaching impact on our daily life. In this dissertation, we design wireless communication system for CPS. To make CPS robust and responsive, it is critical to have a communication subsystem that is reliable, adaptive, and scalable. Our design uses a layered structure, which includes physical layer, multiple access layer, network layer, and application layer. Emphases are placed on multiple access and network layer. At multiple access layer, we have designed three approaches, namely compressed multiple access, sample-contention multiple access, and prioritized multiple access, for reliable and selective multiple access. At network layer, we focus on the problem of creating reliable route, with service interruption anticipated. We propose two methods: the first method is a centralized one that creates backup path around zones posing high interruption risk; the other method is a distributed one that utilizes Ant Colony Optimization (ACO) and positive feedback, and is able to update multipath dynamically. Applications are treated as subscribers to the data service provided by the communication system. Their data quality requirements and Quality of Service (QoS) feedback are incorporated into cross-layer optimization in our design. We have evaluated our design through both simulation and testbed. Our design demonstrates desired reliability, scalability and timeliness in data transmission. Performance gain is observed over conventional approaches as such random access
    • …
    corecore