5,728 research outputs found

    Directional Relays for Multi-Hop Cooperative Cognitive Radio Networks

    Get PDF
    In this paper, we investigate power allocation and beamforming in a relay assisted cognitive radio (CR) network. Our objective is to maximize the performance of the CR network while limiting interference in the direction of the primary users (PUs). In order to achieve these goals, we first consider joint power allocation and beamforming for cognitive nodes in direct links. Then, we propose an optimal power allocation strategy for relay nodes in indirect transmissions. Unlike the conventional cooperative relaying networks, the applied relays are equipped with directional antennas to further reduce the interference to PUs and meet the CR network requirements. The proposed approach employs genetic algorithm (GA) to solve the optimization problems. Numerical simulation results illustrate the quality of service (QoS) satisfaction in both primary and secondary networks. These results also show that notable improvements are achieved in the system performance if the conventional omni-directional relays are replaced with directional ones

    Wireless powered D2D communications underlying cellular networks: design and performance of the extended coverage

    Get PDF
    Because of the short battery life of user equipments (UEs), and the requirements for better quality of service have been more demanding, energy efficiency (EE) has emerged to be important in device-to-device (D2D) communications. In this paper, we consider a scenario, in which D2D UEs in a half-duplex decode-and-forward cognitive D2D communication underlying a traditional cellular network harvest energy and communicate with each other by using the spectrum allocated by the base station (BS). In order to develop a practical design, we achieve the optimal time switching (TS) ratio for energy harvesting. Besides that, we derive closed-form expressions for outage probability, sum-bit error rate, average EE and instantaneous rate by considering the scenario when installing the BS near UEs or far from the UEs. Two communication types are enabled by TS-based protocol. Our numerical and simulation results prove that the data rate of the D2D communication can be significantly enhanced.Web of Science58439939

    Wireless Network-Level Partial Relay Cooperation: A Stable Throughput Analysis

    Full text link
    In this work, we study the benefit of partial relay cooperation. We consider a two-node system consisting of one source and one relay node transmitting information to a common destination. The source and the relay have external traffic and in addition, the relay is equipped with a flow controller to regulate the incoming traffic from the source node. The cooperation is performed at the network level. A collision channel with erasures is considered. We provide an exact characterization of the stability region of the system and we also prove that the system with partial cooperation is always better or at least equal to the system without the flow controller.Comment: Submitted for journal publication. arXiv admin note: text overlap with arXiv:1502.0113

    Relay-assisted Multiple Access with Full-duplex Multi-Packet Reception

    Full text link
    The effect of full-duplex cooperative relaying in a random access multiuser network is investigated here. First, we model the self-interference incurred due to full-duplex operation, assuming multi-packet reception capabilities for both the relay and the destination node. Traffic at the source nodes is considered saturated and the cooperative relay, which does not have packets of its own, stores a source packet that it receives successfully in its queue when the transmission to the destination has failed. We obtain analytical expressions for key performance metrics at the relay, such as arrival and service rates, stability conditions, and average queue length, as functions of the transmission probabilities, the self interference coefficient, and the links' outage probabilities. Furthermore, we study the impact of the relay node and the self-interference coefficient on the per-user and aggregate throughput, and the average delay per packet. We show that perfect self-interference cancelation plays a crucial role when the SINR threshold is small, since it may result to worse performance in throughput and delay comparing with the half-duplex case. This is because perfect self-interference cancelation can cause an unstable queue at the relay under some conditions.Comment: Accepted for publication in the IEEE Transactions on Wireless Communication

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future
    corecore