4,294 research outputs found

    A simple maximum power point tracking based control strategy applied to a variable speed squirrel cage induction generator

    Get PDF
    This paper presents a comprehensive modelling and control study of a variable speed wind energy conversion system based on a squirrel-cage induction generator (SCIG). The mathematical model of the SCIG is derived in Park frame along with the indirect field oriented control (IFOC) scheme based on a proportional and integral speed controller. A simple maximum power point tracking strategy is used to determine the optimal speed under variable wind speed conditions which is then used as the reference in the IFOC scheme. Power flow between the supply and the inverter is regulated via simultaneous control of the active and reactive currents of the grid and the DC link voltage. The simulation results show that the proposed control technique is able to maximise the energy extracted from the wind during the simulation scenarios considered. The results also demonstrate good transient response characteristics in the decoupled real and reactive powers.Peer reviewedFinal Accepted Versio

    Alone Self-Excited Induction Generators

    Get PDF
    In recent years, some converter structures and analyzing methods for the voltage regulation of stand-alone self-excited induction generators (SEIGs) have been introduced. However, all of them are concerned with the three-phase voltage control of three-phase SEIGs or the single-phase voltage control of single-phase SEIGs for the operation of these machines under balanced load conditions. In this paper, each phase voltage is controlled separately through separated converters, which consist of a full-bridge diode rectifier and one-IGBT. For this purpose, the principle of the electronic load controllers supported by fuzzy logic is employed in the two-different proposed converter structures. While changing single phase consumer loads that are independent from each other, the output voltages of the generator are controlled independently by three-number of separated electronic load controllers (SELCs) in two different mode operations. The aim is to obtain a rated power from the SEIG via the switching of the dump loads to be the complement of consumer load variations. The transient and steady state behaviors of the whole system are investigated by simulation studies from the point of getting the design parameters, and experiments are carried out for validation of the results. The results illustrate that the proposed SELC system is capable of coping with independent consumer load variations to keep output voltage at a desired value for each phase. It is also available for unbalanced consumer load conditions. In addition, it is concluded that the proposed converter without a filter capacitor has less harmonics on the currents

    Modeling and Control for Smart Grid Integration of Solar/Wind Energy Conversion System

    Get PDF
    Performance optimization, system reliability and operational efficiency are key characteristics of smart grid systems. In this paper a novel model of smart grid-connected PV/WT hybrid system is developed. It comprises photovoltaic array, wind turbine, asynchronous (induction) generator, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P&O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The dynamic behavior of the proposed model is examined under different operating conditions. Solar irradiance, temperature and wind speed data is gathered from a grid connected, 28.8kW solar power system located in central Manchester. Real-time measured parameters are used as inputs for the developed system. The proposed model and its control strategy offer a proper tool for smart grid performance optimization

    Power Quality Enhancement in Electricity Grids with Wind Energy Using Multicell Converters and Energy Storage

    Get PDF
    In recent years, the wind power industry is experiencing a rapid growth and more wind farms with larger size wind turbines are being connected to the power system. While this contributes to the overall security of electricity supply, large-scale deployment of wind energy into the grid also presents many technical challenges. Most of these challenges are one way or another, related to the variability and intermittent nature of wind and affect the power quality of the distribution grid. Power quality relates to factors that cause variations in the voltage level and frequency as well as distortion in the voltage and current waveforms due to wind variability which produces both harmonics and inter-harmonics. The main motivation behind work is to propose a new topology of the static AC/DC/AC multicell converter to improve the power quality in grid-connected wind energy conversion systems. Serial switching cells have the ability to achieve a high power with lower-size components and improve the voltage waveforms at the input and output of the converter by increasing the number of cells. Furthermore, a battery energy storage system is included and a power management strategy is designed to ensure the continuity of power supply and consequently the autonomy of the proposed system. The simulation results are presented for a 149.2 kW wind turbine induction generator system and the results obtained demonstrate the reduced harmonics, improved transient response, and reference tracking of the voltage output of the wind energy conversion system.Peer reviewedFinal Accepted Versio

    The use of doubly fed reluctance machines for large pumps and wind turbines

    Get PDF

    A methodology for the efficient computer representation of dynamic power systems : application to wind parks

    Get PDF
    This contribution presents a methodology to efficiently obtain the numerical and computer solution of dynamic power systems with high penetration of wind turbines. Due to the excessive computational load required to solve the abc models that represent the behavior of the wind turbines, a parallel processing scheme is proposed to enhance the solution of the overall system. Case studies are presented which demonstrate the effectiveness and applications of the proposed methodology

    Emerging Multiport Electrical Machines and Systems: Past Developments, Current Challenges, and Future Prospects

    Get PDF
    Distinct from the conventional machines with only one electrical and one mechanical port, electrical machines featuring multiple electrical/mechanical ports (the so-called multiport electrical machines) provide a compact, flexible, and highly efficient manner to convert and/or transfer energies among different ports. This paper attempts to make a comprehensive overview of the existing multiport topologies, from fundamental characteristics to advanced modeling, analysis, and control, with particular emphasis on the extensively investigated brushless doubly fed machines for highly reliable wind turbines and power split devices for hybrid electric vehicles. A qualitative review approach is mainly adopted, but strong efforts are also made to quantitatively highlight the electromagnetic and control performance. Research challenges are identified, and future trends are discussed

    Fractional kVA Rating PWM Converter Doubly Fed Variable Speed Electric Generator Systems:An Overview in 2020

    Get PDF
    Variable speed generator systems (VSGs) are at work in the now 600 GW installed wind power plants (parks). Also, they are used as vehicular and on ground stand-alone generators. VSGs imply full kVA rating PWM converters in permanent magnet (PM) or in electrically excited synchronous or in cage rotor inductance generators. But, to reduce cost in absence of PMs at a reasonable initial cost (weight) and efficiency, the fractional kVA PWM converter doubly fed induction generators (DFIG) cover now about 50% of all installed power in wind generators. The present paper reviews recent progress in DFIG and various forms of brushless DFGs (doubly fed generators) characterized in terms of topology, design, performance and advanced control for healthy and faulty load conditions in the hope of inspiring new, hopefully ground breakings, progress for wind and hydro energy conversion and in vehicular and on the ground stand-alone generator applications

    Back-to-back Converter Control of Grid-connected Wind Turbine to Mitigate Voltage Drop Caused by Faults

    Full text link
    Power electronic converters enable wind turbines, operating at variable speed, to generate electricity more efficiently. Among variable speed operating turbine generators, permanent magnetic synchronous generator (PMSG) has got more attentions due to low cost and maintenance requirements. In addition, the converter in a wind turbine with PMSG decouples the turbine from the power grid, which favors them for grid codes. In this paper, the performance of back-to-back (B2B) converter control of a wind turbine system with PMSG is investigated on a faulty grid. The switching strategy of the grid side converter is designed to improve voltage drop caused by the fault in the grid while the maximum available active power of wind turbine system is injected to the grid and the DC link voltage in the converter is regulated. The methodology of the converter control is elaborated in details and its performance on a sample faulty grid is assessed through simulation
    corecore