186 research outputs found

    A microfabricated Electro Quasi Static induction turbine-generator

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2005.Includes bibliographical references (p. [263]-268).An ElectroQuasiStatic (EQS) induction machine has been fabricated and has generated net electric power. A maximum power output of 192 [mu]W at 235 krpm has been measured under driven excitation of the six phases. Self excited operation was also demonstrated. Under self-excitation, no external drive electronics are required and sufficient power was produced to dimly light four LED's on two of the six phases. This is believed to be the first demonstration of both power generation and self-excited operation of an EQS induction machine of any scale reported in the open literature. The generator comprises 5 silicon layers, fusion bonded together, and annealed at 700⁰C. The turbine rotor, 4 mm in diameter, is supported on gas bearings. The thrust bearings are formed by a shallow etch of 1.5 [mu]m to define the thrust bearing gap. Thrust bearing pressurization is through 10 [mu]m diameter nozzles, etched 100 [mu]m deep. The journal bearing is a precision, ... wide, 300 [mu]m deep annular trench around the periphery of the turbine disk. The generator airgap is 3 [mu]m. The inner radius of the generator is 1.011 mm, and the outer radius 1.87mm. The machine has ].31 poles for each of the 6 phases, for a total of 786 stator electrodes. Precise microfabrication and aligned, full-wafer fusion bonding enabled turbine generator devices to be operated at rotational speeds as high as 850 krpm. A detailed state-space model of the EQS machine and its external parasitics is presented. The external stray capacitances, and their unbalance, play a critical role in the performance of the device. A method for estimating the strays experimentally is discussed.(cont.) This estimated, updated model made it possible to use computer optimization techniques to find the optimal drive conditions for the device to generate maximum power. Carrier depletion in the moderately doped polysilicon rotor conductor film prevented the generator from producing power at higher voltages, and limited the maximum machine terminal voltage under self-excitation to approximately 30 Vp-p.by Jasper Lodewyk Steyn.Ph.D

    Design for Electromagnetic Compatibility--In a Nutshell

    Get PDF
    This open access book provides practicing electrical engineers and students a practical – and mathematically sound – introduction to the topic of electromagnetic compatibility (EMC). The author enables readers to understand better how to overcome commonly failed EMC tests for radiated emission, radiated immunity, and electrostatic discharge (ESD), while providing concrete EMC design guidelines. The book also presents an overview of EMC standards and regulations and how to test for a global market access

    Packaging of Wide Bandgap Power Semiconductors using Simulation-based Design

    Get PDF

    The Convergence of Parametric Resonance and Vibration Energy Harvesting

    Get PDF
    Energy harvesting is an emerging technology that derives electricity from the ambient environment in a decentralised and self-contained fashion. Applications include self-powered medical implants, wearable electronics and wireless sensors for structural health monitoring. Amongst the vast options of ambient sources, vibration energy harvesting (VEH) has attracted by far the most research attention. Two of the key persisting issues of VEH are the limited power density compared to conventional power supplies and confined operational frequency bandwidth in light of the random, broadband and fast-varying nature of real vibration. The convention has relied on directly excited resonance to maximise the mechanical-to-electrical energy conversion efficiency. This thesis takes a fundamentally different approach by employing parametric resonance, which, unlike the former, its resonant amplitude growth does not saturate due to linear damping. Therefore, parametric resonance, when activated, has the potential to accumulate much more energy than direct resonance. The vibrational nonlinearities that are almost always associated with parametric resonance can offer a modest frequency widening. Despite its promising theoretical potentials, there is an intrinsic damping dependent initiation threshold amplitude, which must be attained prior to its onset. The relatively low amplitude of real vibration and the unavoidable presence of electrical damping to extract the energy render the onset of parametric resonance practically elusive. Design approaches have been devised to passively minimise this initiation threshold. Simulation and experimental results of various design iterations have demonstrated favourable results for parametric resonance as well as the various threshold-reduction mechanisms. For instance, one of the macro-scale electromagnetic prototypes (∼1800 cm3) when parametrically driven, has demonstrated around 50% increase in half power band and an order of magnitude higher peak power (171.5 mW at 0.57 ms−2) in contrast to the same prototype directly driven at fundamental resonance (27.75 mW at 0.65 ms−2). A MEMS (micro-electromechanical system) prototype with the additional threshold-reduction design needed 1 ms−2 excitation to activate parametric resonance while a comparable device without the threshold-reduction mechanism required in excess of 30 ms−2. One of the macro-scale piezoelectric prototypes operated into auto-parametric resonance has demon-strated notable further reduction to the initiation threshold. A vacuum packaged MEMS prototype demonstrated broadening of the frequency bandwidth along with higher power peak (324 nW and 160 Hz) for the parametric regime compared to when operated in room pressure (166 nW and 80 Hz), unlike the higher but narrower direct resonant peak (60.9 nW and 11 Hz in vacuum and 20.8 nW and 40 Hz in room pressure). The simultaneous incorporation of direct resonance and bi-stability have been investigated to realise multi-regime VEH. The potential to integrate parametric resonance in the electrical domains have also been numerically explored. The ultimate aim is not to replace direct resonance but rather for the various resonant phenomena to complement each other and together harness a larger region of the available power spectrum

    Pertanika Journal of Science & Technology

    Get PDF
    corecore