31,266 research outputs found

    Duhovne popijevke iz Hercegovine - Euharistijske popijevke iz Hercegovine

    Get PDF
    We propose a mathematical framework, inspired by the WirelessHART specification, for modeling and analysing multi-hop communication networks. The framework is designed for systems consisting of multiple control loops closed over a multi-hop communication network. We separate control, topology, routing, and scheduling and propose formal syntax and semantics for the dynamics of the composed system. The main technical contribution of the paper is an explicit translation of multi-hop control networks to switched systems. We describe a Mathematica notebook that automates the translation of multihop control networks to switched systems, and use this tool to show how techniques for analysis of switched systems can be used to address control and networking co-design challenges.QC 2012021

    Fault detection and isolation of malicious nodes in MIMO Multi-hop Control Networks

    Full text link
    A MIMO Multi-hop Control Network (MCN) consists of a MIMO LTI system where the communication between sensors, actuators and computational units is supported by a (wireless) multi-hop communication network, and data flow is performed using scheduling and routing of sensing and actuation data. We provide necessary and sufficient conditions on the plant dynamics and on the communication protocol configuration such that the Fault Detection and Isolation (FDI) problem of failures and malicious attacks to communication nodes can be solved.Comment: 6 page

    Adaptive Resource Control in 2-hop Ad-Hoc Networks

    Get PDF
    This paper presents a simple resource control\ud mechanism with traffic scheduling for 2-hop ad-hoc networks, in\ud which the Request-To-Send (RTS) packet is utilized to deliver\ud feedback information. With this feedback information, the\ud Transmission Opportunity (TXOP) limit of the sources can be\ud controlled to balance the traffic. Furthermore, a bottleneck\ud transmission scheduling scheme is introduced to provide fairness\ud between local and forwarding flows. The proposed mechanism is\ud modeled and evaluated using the well-known 20-sim dynamic\ud system simulator. Experimental results show that a fairer and\ud more efficient bandwidth utilization can be achieved than\ud without the feedback mechanism. The use of the structured and\ud formalized control-theoretical modeling framework has as\ud advantage that results can be obtained in a fast and efficient way

    Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks

    Full text link
    Closing feedback loops fast and over long distances is key to emerging applications; for example, robot motion control and swarm coordination require update intervals of tens of milliseconds. Low-power wireless technology is preferred for its low cost, small form factor, and flexibility, especially if the devices support multi-hop communication. So far, however, feedback control over wireless multi-hop networks has only been shown for update intervals on the order of seconds. This paper presents a wireless embedded system that tames imperfections impairing control performance (e.g., jitter and message loss), and a control design that exploits the essential properties of this system to provably guarantee closed-loop stability for physical processes with linear time-invariant dynamics. Using experiments on a cyber-physical testbed with 20 wireless nodes and multiple cart-pole systems, we are the first to demonstrate and evaluate feedback control and coordination over wireless multi-hop networks for update intervals of 20 to 50 milliseconds.Comment: Accepted final version to appear in: 10th ACM/IEEE International Conference on Cyber-Physical Systems (with CPS-IoT Week 2019) (ICCPS '19), April 16--18, 2019, Montreal, QC, Canad
    • …
    corecore