6,250 research outputs found

    Comprehensive Security Framework for Global Threats Analysis

    Get PDF
    Cyber criminality activities are changing and becoming more and more professional. With the growth of financial flows through the Internet and the Information System (IS), new kinds of thread arise involving complex scenarios spread within multiple IS components. The IS information modeling and Behavioral Analysis are becoming new solutions to normalize the IS information and counter these new threads. This paper presents a framework which details the principal and necessary steps for monitoring an IS. We present the architecture of the framework, i.e. an ontology of activities carried out within an IS to model security information and User Behavioral analysis. The results of the performed experiments on real data show that the modeling is effective to reduce the amount of events by 91%. The User Behavioral Analysis on uniform modeled data is also effective, detecting more than 80% of legitimate actions of attack scenarios

    A Novel Efficient Dynamic Throttling Strategy for Blockchain-Based Intrusion Detection Systems in 6G-Enabled VSNs

    Get PDF
    Vehicular Social Networks (VSNs) have emerged as a new social interaction paradigm, where vehicles can form social networks on the roads to improve the convenience/safety of passengers. VSNs are part of Vehicle to Everything (V2X) services, which is one of the industrial verticals in the coming sixth generation (6G) networks. The lower latency, higher connection density, and near-100% coverage envisaged in 6G will enable more efficient implementation of VSNs applications. The purpose of this study is to address the problem of lateral movements of attackers who could compromise one device in a VSN, given the large number of connected devices and services in VSNs and attack other devices and vehicles. This challenge is addressed via our proposed Blockchain-based Collaborative Distributed Intrusion Detection (BCDID) system with a novel Dynamic Throttling Strategy (DTS) to detect and prevent attackers’ lateral movements in VSNs. Our experiments showed how the proposed DTS improve the effectiveness of the BCDID system in terms of detection capabilities and handling queries three times faster than the default strategy with 350k queries tested. We concluded that our DTS strategy can increase transaction processing capacity in the BCDID system and improve its performance while maintaining the integrity of data on-chain

    Towards a cloud‑based automated surveillance system using wireless technologies

    Get PDF
    Cloud Computing can bring multiple benefits for Smart Cities. It permits the easy creation of centralized knowledge bases, thus straightforwardly enabling that multiple embedded systems (such as sensor or control devices) can have a collaborative, shared intelligence. In addition to this, thanks to its vast computing power, complex tasks can be done over low-spec devices just by offloading computation to the cloud, with the additional advantage of saving energy. In this work, cloud’s capabilities are exploited to implement and test a cloud-based surveillance system. Using a shared, 3D symbolic world model, different devices have a complete knowledge of all the elements, people and intruders in a certain open area or inside a building. The implementation of a volumetric, 3D, object-oriented, cloud-based world model (including semantic information) is novel as far as we know. Very simple devices (orange Pi) can send RGBD streams (using kinect cameras) to the cloud, where all the processing is distributed and done thanks to its inherent scalability. A proof-of-concept experiment is done in this paper in a testing lab with multiple cameras connected to the cloud with 802.11ac wireless technology. Our results show that this kind of surveillance system is possible currently, and that trends indicate that it can be improved at a short term to produce high performance vigilance system using low-speed devices. In addition, this proof-of-concept claims that many interesting opportunities and challenges arise, for example, when mobile watch robots and fixed cameras would act as a team for carrying out complex collaborative surveillance strategies.Ministerio de Economía y Competitividad TEC2016-77785-PJunta de Andalucía P12-TIC-130

    SecMon: End-to-End Quality and Security Monitoring System

    Get PDF
    The Voice over Internet Protocol (VoIP) is becoming a more available and popular way of communicating for Internet users. This also applies to Peer-to-Peer (P2P) systems and merging these two have already proven to be successful (e.g. Skype). Even the existing standards of VoIP provide an assurance of security and Quality of Service (QoS), however, these features are usually optional and supported by limited number of implementations. As a result, the lack of mandatory and widely applicable QoS and security guaranties makes the contemporary VoIP systems vulnerable to attacks and network disturbances. In this paper we are facing these issues and propose the SecMon system, which simultaneously provides a lightweight security mechanism and improves quality parameters of the call. SecMon is intended specially for VoIP service over P2P networks and its main advantage is that it provides authentication, data integrity services, adaptive QoS and (D)DoS attack detection. Moreover, the SecMon approach represents a low-bandwidth consumption solution that is transparent to the users and possesses a self-organizing capability. The above-mentioned features are accomplished mainly by utilizing two information hiding techniques: digital audio watermarking and network steganography. These techniques are used to create covert channels that serve as transport channels for lightweight QoS measurement's results. Furthermore, these metrics are aggregated in a reputation system that enables best route path selection in the P2P network. The reputation system helps also to mitigate (D)DoS attacks, maximize performance and increase transmission efficiency in the network.Comment: Paper was presented at 7th international conference IBIZA 2008: On Computer Science - Research And Applications, Poland, Kazimierz Dolny 31.01-2.02 2008; 14 pages, 5 figure

    Model the System from Adversary Viewpoint: Threats Identification and Modeling

    Full text link
    Security attacks are hard to understand, often expressed with unfriendly and limited details, making it difficult for security experts and for security analysts to create intelligible security specifications. For instance, to explain Why (attack objective), What (i.e., system assets, goals, etc.), and How (attack method), adversary achieved his attack goals. We introduce in this paper a security attack meta-model for our SysML-Sec framework, developed to improve the threat identification and modeling through the explicit representation of security concerns with knowledge representation techniques. Our proposed meta-model enables the specification of these concerns through ontological concepts which define the semantics of the security artifacts and introduced using SysML-Sec diagrams. This meta-model also enables representing the relationships that tie several such concepts together. This representation is then used for reasoning about the knowledge introduced by system designers as well as security experts through the graphical environment of the SysML-Sec framework.Comment: In Proceedings AIDP 2014, arXiv:1410.322

    BigFCM: Fast, Precise and Scalable FCM on Hadoop

    Full text link
    Clustering plays an important role in mining big data both as a modeling technique and a preprocessing step in many data mining process implementations. Fuzzy clustering provides more flexibility than non-fuzzy methods by allowing each data record to belong to more than one cluster to some degree. However, a serious challenge in fuzzy clustering is the lack of scalability. Massive datasets in emerging fields such as geosciences, biology and networking do require parallel and distributed computations with high performance to solve real-world problems. Although some clustering methods are already improved to execute on big data platforms, but their execution time is highly increased for large datasets. In this paper, a scalable Fuzzy C-Means (FCM) clustering named BigFCM is proposed and designed for the Hadoop distributed data platform. Based on the map-reduce programming model, it exploits several mechanisms including an efficient caching design to achieve several orders of magnitude reduction in execution time. Extensive evaluation over multi-gigabyte datasets shows that BigFCM is scalable while it preserves the quality of clustering
    • …
    corecore