161 research outputs found

    Practical Model Checking of a Home Area Network System: Case Study

    Get PDF
    The integrated communication infrastructure is the core of the Smart Grid architecture. Its two-way communication and information flow provides this network with all needed resources in order to control and manage all connected components from the utility to the customer side. This latter, named the Home Area Network or HAN, is a dedicated network connecting smart devices inside the customer home, and using different solutions. In order to avoid problems and anomalies along the process life cycle of developing a new solution for HAN network, the modeling and validation is one of the most powerful tools to achieve this goal. This paper presents a practical case study of such validation. It intends to validate a HAN SDL model, described in a previous work, using model checking techniques. It introduces a method to translate the SDL model to a Promela model using an intermediate format IF. After the generation of the Promela model, verification is performed to ensure that some functional properties are satisfied. The desired properties are defined in Linear Temporal Logic (LTL), and DTSPIN (an extension of SPIN with discrete time) model checker is used to verify the correctness of the model

    Cadre conceptuel pour la composition des objets et la spécification du comportement

    Full text link
    Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal

    Automated Validation of State-Based Client-Centric Isolation with TLA <sup>+</sup>

    Get PDF
    Clear consistency guarantees on data are paramount for the design and implementation of distributed systems. When implementing distributed applications, developers require approaches to verify the data consistency guarantees of an implementation choice. Crooks et al. define a state-based and client-centric model of database isolation. This paper formalizes this state-based model in, reproduces their examples and shows how to model check runtime traces and algorithms with this formalization. The formalized model in enables semi-automatic model checking for different implementation alternatives for transactional operations and allows checking of conformance to isolation levels. We reproduce examples of the original paper and confirm the isolation guarantees of the combination of the well-known 2-phase locking and 2-phase commit algorithms. Using model checking this formalization can also help finding bugs in incorrect specifications. This improves feasibility of automated checking of isolation guarantees in synthesized synchronization implementations and it provides an environment for experimenting with new designs.</p

    Decision Support System for Inventory Control of Raw Material

    Get PDF
    PT Suwarni Agro Mandiri Plant Pariaman is a company which produces fertilizer. This company has a problem related to raw material inventory. The inventory can be overstock or stock out. It is due to their working which is not guided by an information system. Therefore, this research proposes a decision support system for controlling the inventory of the raw material. The system uses Material Requirement Planning (MRP) approach and is designed in three sub-systems. They are OLTP database for managing the daily activities, MRP for determining the lot size and the raw material ordering time, and OLAP with data warehouse for analyzing the raw material data. Keywords-inventory; inventory control; online analytical processing; online transaction processin

    Event-B in the Institutional Framework: Defining a Semantics, Modularisation Constructs and Interoperability for a Specification Language

    Get PDF
    Event-B is an industrial-strength specification language for verifying the properties of a given system’s specification. It is supported by its Eclipse-based IDE, Rodin, and uses the process of refinement to model systems at different levels of abstraction. Although a mature formalism, Event-B has a number of limitations. In this thesis, we demonstrate that Event-B lacks formally defined modularisation constructs. Additionally, interoperability between Event-B and other formalisms has been achieved in an ad hoc manner. Moreover, although a formal language, Event-B does not have a formal semantics. We address each of these limitations in this thesis using the theory of institutions. The theory of institutions provides a category-theoretic way of representing a formalism. Formalisms that have been represented as institutions gain access to an array of generic specification-building operators that can be used to modularise specifications in a formalismindependent manner. In the theory of institutions, there are constructs (known as institution (co)morphisms) that provide us with the facility to create interoperability between formalisms in a mathematically sound way. The main contribution of this thesis is the definition of an institution for Event-B, EVT, which allows us to address its identified limitations. To this end, we formally define a translational semantics from Event- B to EVT. We show how specification-building operators can provide a unified set of modularisation constructs for Event-B. In fact, the institutional framework that we have incorporated Event-B into is more accommodating to modularisation than the current state-of-the-art for Rodin. Furthermore, we present institution morphisms that facilitate interoperability between the respective institutions for Event-B and UML. This approach is more generic than the current approach to interoperability for Event-B and in fact, allows access to any formalism or logic that has already been defined as an institution. Finally, by defining EVT, we have outlined the steps required in order to include similar formalisms into the institutional framework. Hence, this thesis acts as a template for defining an institution for a specification language

    Formal methods adoption in the commercial world

    Get PDF
    : leaves 122-134There have been numerous studies on formal methods but little utilisation of formal methods in the commercial world. This can be attributed to many factors, such as that few specialists know how to use formal methods. Moreover, the use of mathematical notation leads to the perception that formal methods are difficult. Formal methods can be described as system design methods by which complex computer systems are built using mathematical notation and logic. Formal methods have been used in the software development world since 1940, that is to say, from the earliest stage of computer development. To date, there has been a slow adoption of formal methods, which are mostly used for mission-critical projects in, for example, the military and the aviation industry. Researchers worldwide are conducting studies on formal methods, but the research mostly deals with path planning and control and not the runtime verification of autonomous systems. The main focus of this dissertation is the question of how to increase the pace at which formal methods are adopted in the business or commercial world. As part of this dissertation, a framework was developed to facilitate the use of formal methods in the commercial world. The framework mainly focuses on education, support tools, buy-in and remuneration. The framework was validated using a case study to illustrate its practicality. This dissertation also focuses on different types of formal methods and how they are used, as well as the link between formal methods and other software development techniques. An ERP system specification is presented in both natural language (informal) and formal notation, which demonstrates how a formal specification can be derived from an informal specification using the enhanced established strategy for constructing a Z specification as a guideline. Success stories of companies that are applying formal methods in the commercial world are also presented.School of ComputingM. Sc. (Computing

    MODEL DRIVEN SOFTWARE PRODUCT LINE ENGINEERING: SYSTEM VARIABILITY VIEW AND PROCESS IMPLICATIONS

    Full text link
    La Ingeniería de Líneas de Productos Software -Software Product Line Engineerings (SPLEs) en inglés- es una técnica de desarrollo de software que busca aplicar los principios de la fabricación industrial para la obtención de aplicaciones informáticas: esto es, una Línea de productos Software -Software Product Line (SPL)- se emplea para producir una familia de productos con características comunes, cuyos miembros, sin embargo, pueden tener características diferenciales. Identificar a priori estas características comunes y diferenciales permite maximizar la reutilización, reduciendo el tiempo y el coste del desarrollo. Describir estas relaciones con la suficiente expresividad se vuelve un aspecto fundamental para conseguir el éxito. La Ingeniería Dirigida por Modelos -Model Driven Engineering (MDE) en inglés- se ha revelado en los últimos años como un paradigma que permite tratar con artefactos software con un alto nivel de abstracción de forma efectiva. Gracias a ello, las SPLs puede aprovecharse en granmedida de los estándares y herramientas que han surgido dentro de la comunidad de MDE. No obstante, aún no se ha conseguido una buena integración entre SPLE y MDE, y como consecuencia, los mecanismos para la gestión de la variabilidad no son suficientemente expresivos. De esta manera, no es posible integrar la variabilidad de forma eficiente en procesos complejos de desarrollo de software donde las diferentes vistas de un sistema, las transformaciones de modelos y la generación de código juegan un papel fundamental. Esta tesis presenta MULTIPLE, un marco de trabajo y una herramienta que persiguen integrar de forma precisa y eficiente los mecanismos de gestión de variabilidad propios de las SPLs dentro de los procesos de MDE. MULTIPLE proporciona lenguajes específicos de dominio para especificar diferentes vistas de los sistemas software. Entre ellas se hace especial hincapié en la vista de variabilidad ya que es determinante para la especificación de SPLs.Gómez Llana, A. (2012). MODEL DRIVEN SOFTWARE PRODUCT LINE ENGINEERING: SYSTEM VARIABILITY VIEW AND PROCESS IMPLICATIONS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/15075Palanci
    corecore