136 research outputs found

    Modeling tourists' personality in recommender systems: how does personality influence preferences for tourist attractions?

    Get PDF
    Personalization is increasingly being perceived as an important factor for the effectiveness of Recommender Systems (RS). This is especially true in the tourism domain, where travelling comprises emotionally charged experiences, and therefore, the more about the tourist is known, better recommendations can be made. The inclusion of psychological aspects to generate recommendations, such as personality, is a growing trend in RS and they are being studied to provide more personalized approaches. However, although many studies on the psychology of tourism exist, studies on the prediction of tourist preferences based on their personality are limited. Therefore, we undertook a large-scale study in order to determine how the Big Five personality dimensions influence tourists' preferences for tourist attractions, gathering data from an online questionnaire, sent to Portuguese individuals from the academic sector and their respective relatives/friends (n=508). Using Exploratory and Confirmatory Factor Analysis, we extracted 11 main categories of tourist attractions and analyzed which personality dimensions were predictors (or not) of preferences for those tourist attractions. As a result, we propose the first model that relates the five personality dimensions with preferences for tourist attractions, which intends to offer a base for researchers of RS for tourism to automatically model tourist preferences based on their personality.GrouPlanner Project under the European Regional Development Fund POCI-01-0145-FEDER29178 and by National Funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within the Projects UIDB/00319/2020 and UIDB/00760/202

    Smart Buildings

    Get PDF
    This talk presents an efficient cyberphysical platform for the smart management of smart buildings http://www.deepint.net. It is efficient because it facilitates the implementation of data acquisition and data management methods, as well as data representation and dashboard configuration. The platform allows for the use of any type of data source, ranging from the measurements of a multi-functional IoT sensing devices to relational and non-relational databases. It is also smart because it incorporates a complete artificial intelligence suit for data analysis; it includes techniques for data classification, clustering, forecasting, optimization, visualization, etc. It is also compatible with the edge computing concept, allowing for the distribution of intelligence and the use of intelligent sensors. The concept of smart building is evolving and adapting to new applications; the trend to create intelligent neighbourhoods, districts or territories is becoming increasingly popular, as opposed to the previous approach of managing an entire megacity. In this paper, the platform is presented, and its architecture and functionalities are described. Moreover, its operation has been validated in a case study at Salamanca - Ecocasa. This platform could enable smart building to develop adapted knowledge management systems, adapt them to new requirements and to use multiple types of data, and execute efficient computational and artificial intelligence algorithms. The platform optimizes the decisions taken by human experts through explainable artificial intelligence models that obtain data from IoT sensors, databases, the Internet, etc. The global intelligence of the platform could potentially coordinate its decision-making processes with intelligent nodes installed in the edge, which would use the most advanced data processing techniques

    Smart territories

    Get PDF
    The concept of smart cities is relatively new in research. Thanks to the colossal advances in Artificial Intelligence that took place over the last decade we are able to do all that that we once thought impossible; we build cities driven by information and technologies. In this keynote, we are going to look at the success stories of smart city-related projects and analyse the factors that led them to success. The development of interactive, reliable and secure systems, both connectionist and symbolic, is often a time-consuming process in which numerous experts are involved. However, intuitive and automated tools like “Deep Intelligence” developed by DCSc and BISITE, facilitate this process. Furthermore, in this talk we will analyse the importance of complementary technologies such as IoT and Blockchain in the development of intelligent systems, as well as the use of edge platforms or fog computing
    corecore