227 research outputs found

    Contribution to Quality-driven Evolutionary Software Development process for Service-Oriented Architectures

    Get PDF
    The quality of software is a key element for the successful of a system. Currently, with the advance of the technology, consumers demand more and better services. Models for the development process have also to be adapted to new requirements. This is particular true in the case of service oriented systems (domain of this thesis), where an unpredictable number of users can access to one or several services. This work proposes an improvement in the models for the software development process based on the theory of the evolutionary software development. The main objective is to maintain and improve the quality of software as long as possible and with the minimum effort and cost. Usually, this process is supported on methods known in the literature as agile software development methods. Other key element in this thesis is the service oriented software architecture. Software architecture plays an important role in the quality of any software system. The Service oriented architecture adds the service flexibility, the services are autonomous and compact assets, and they can be improved and integrated with better facility. The proposed model in this thesis for evolutionary software development makes emphasis in the quality of services. Therefore, some principles of evolutionary development are redefined and new processes are introduced, such as: architecture assessment, architecture recovery and architecture conformance. Every new process will be evaluated with case studies considering quality aspects. They have been selected according to the market demand, they are: the performance, security and evolutionability. Other aspects could be considered of the same way than the three previous, but we believe that these quality attributes are enough to demonstrate the viability of our proposal

    Tradespace and Affordability – Phase 1

    Get PDF
    One of the key elements of the SERC’s research strategy is transforming the practice of systems engineering – “SE Transformation.” The Grand Challenge goal for SE Transformation is to transform the DoD community’s current systems engineering and management methods, processes, and tools (MPTs) and practices away from sequential, single stovepipe system, hardware-first, outside-in, document-driven, point-solution, acquisition-oriented approaches; and toward concurrent, portfolio and enterprise-oriented, hardware-software-human engineered, balanced outside-in and inside-out, model-driven, set-based, full life cycle approaches.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046).This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046)

    Microservice Transition and its Granularity Problem: A Systematic Mapping Study

    Get PDF
    Microservices have gained wide recognition and acceptance in software industries as an emerging architectural style for autonomic, scalable, and more reliable computing. The transition to microservices has been highly motivated by the need for better alignment of technical design decisions with improving value potentials of architectures. Despite microservices' popularity, research still lacks disciplined understanding of transition and consensus on the principles and activities underlying "micro-ing" architectures. In this paper, we report on a systematic mapping study that consolidates various views, approaches and activities that commonly assist in the transition to microservices. The study aims to provide a better understanding of the transition; it also contributes a working definition of the transition and technical activities underlying it. We term the transition and technical activities leading to microservice architectures as microservitization. We then shed light on a fundamental problem of microservitization: microservice granularity and reasoning about its adaptation as first-class entities. This study reviews state-of-the-art and -practice related to reasoning about microservice granularity; it reviews modelling approaches, aspects considered, guidelines and processes used to reason about microservice granularity. This study identifies opportunities for future research and development related to reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table
    corecore