3,948 research outputs found

    UNDERWATER COMMUNICATIONS WITH ACOUSTIC STEGANOGRAPHY: RECOVERY ANALYSIS AND MODELING

    Get PDF
    In the modern warfare environment, communication is a cornerstone of combat competence. However, the increasing threat of communications-denied environments highlights the need for communications systems with low probability of intercept and detection. This is doubly true in the subsurface environment, where communications and sonar systems can reveal the tactical location of platforms and capabilities, subverting their covert mission set. A steganographic communication scheme that leverages existing technologies and unexpected data carriers is a feasible means of increasing assurance of communications, even in denied environments. This research works toward a covert communication system by determining and comparing novel symbol recovery schemes to extract data from a signal transmitted under a steganographic technique and interfered with by a simulated underwater acoustic channel. We apply techniques for reliably extracting imperceptible information from unremarkable acoustic events robust to the variability of the hostile operating environment. The system is evaluated based on performance metrics, such as transmission rate and bit error rate, and we show that our scheme is sufficient to conduct covert communications through acoustic transmissions, though we do not solve the problems of synchronization or equalization.Lieutenant, United States NavyApproved for public release. Distribution is unlimited

    Underwater noise propagation models and its application in renewable energy parks: WaveRoller Case Study

    Get PDF
    In the light of global warming, large-scale transition to renewable power sources is a worldwide challenge, playing wind power a significant role. Sea wave energy is being increasingly regarded in many countries as a major and promising resource but, like all forms of energy conversion, it will inevitably have an impact on the marine environment. WaveRoller, a Wave Energy Conversion Device, is installed in front of Almagreira beach, on the west coast of Portugal. The purpose of this thesis is to study and quantify the underwater radiated noise from this device using an underwater acoustic model in order to estimate potential effects it may have in the marine environment. The model used to run the data will be MIKE Zero – Underwater Acoustic Simulator by DHI . In the study site only cetacean species are expected to occur. Results showed that behavioural responses might be expected for low and mid-frequency cetaceans if they swim close to the device. Also, the device shouldn’t be installed in an area in which a population of cetaceans exists in a 28m ray. For these individuals, injury can be assumed if SEL (Sound Exposure Level) is higher than 215 dB re 1μPa2.s, for non-pulse sounds. Results showed the calculated maximum SEL of the Waveroller sound is 150 dB re 1μPa2.s and therefore no injury is expected. MIKE Zero – Underwater Acoustic Simulator is a powerful tool to test any device that produces underwater noise and offers the possibility to create Surface Sound maps of results by using MIKEXYZ Converter tool

    Analysis of acoustic communication channel characterization data in the surf zone

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2000A channel characterization experiment for the underwater acoustic communication channel was carried out at Scripps Pier in May 1999. The experiment investigated acoustic transmission in very shallow water and breaking waves. In analyzing the data, several questions arose. The majority of the acoustic channel probe data was corrupted by crosstalk in the receiver array cable. This thesis investigates methods to correct for the effects of the crosstalk, to attempt to recover the channel probe data. In selected regions, the crosstalk could be removed quite effectively using a linear least-squares method to estimate the crosstalk coefficients. The bulk of the data could not be corrected, however, primarily due to crosstalk from a receiver channel which was not recorded, and hence could not be well estimated. A second question addressed by this thesis is concerned with acoustic propagation in shallow water under bubble clouds. The breaking waves injected air deep into the water column. The resulting bubble clouds heavily attenuated acoustic signals, effectively causing total dropouts of the acoustic communication channel. Due to buoyancy, the bubbles gradually rise, and the communication channel clears. The channel clearing was significantly slower than predicted by geometric ray acoustic propagation models, however. Proposed explanations included secondary, unobserved, breaking events causing additional bubble injection; delayed rising of bubbles due to turbulent currents; or failure of the geometric ray model due to suppression by bubble clouds of acoustic signals which are not along the geometric ray paths. This thesis investigated the final hypothesis, modeling the acoustic propagation in Scripps Pier environment, using the full wave equation modeling package OASES. It was determined that the attenuation of the propagating acoustic signal is not accurately predicted by the bubble-induced attenuation along the geometric ray path.For financial support, thanks to the National Science Foundation for funding me on a Graduate Research Fellowship, and thanks to the WHOI Education Office for supplementing that fellowship

    Implementation Adaptive Decision Feedback Equalizer for Time-Reversal Communication in Shallow Water Environment

    Get PDF
    Underwater wireless communications are growing very fast along with human needs for applications such as defense, state security, underwater control and monitoring systems. Until now, an acoustic signal is a practical way to achieve long distance communication in the ocean. However, the underwater acoustic channel faces many challenges including limited available bandwidth, long delays, time-variability, and Doppler-spread. These challenges can reduce the reliability of the communication system and the achievement of high data-rate becomes a challenge. Adaptive decision feedback equalization is a method to compensate for the distortion of information signals on the underwater acoustic channel. On the other hand, time reversal is an effective method of overcoming intersymbol interference (ISI) problems which is the effect of multipath phenomena in underwater channels. Spatial focusing on time reversal can reduce the co-existing system disturbances and its temporal focusing makes the received power concentrated within a few taps so that the equalizer design work becomes much simpler. The temporal focusing can also increase the transmission rate. This paper shows that the combination of time reversal and adaptive DFE (TR-DFE) has superior performance than TR and DFE itself. By modifying the step-size parameters in the adaptive DFE, the TR-DFE level of convergence and performance can be improved. The geometry-based modeling which is used proves that distance and multipath variation greatly affect the quality of time reversal communication on the underwater acoustic channel
    • …
    corecore