22,137 research outputs found

    Assessing the suitable habitat for reintroduction of brown trout (Salmo trutta forma fario) in a lowland river : a modeling approach

    Get PDF
    Huge efforts have been made during the past decades to improve the water quality and to restore the physical habitat of rivers and streams in western Europe. This has led to an improvement in biological water quality and an increase in fish stocks in many countries. However, several rheophilic fish species such as brown trout are still categorized as vulnerable in lowland streams in Flanders (Belgium). In order to support cost-efficient restoration programs, habitat suitability modeling can be used. In this study, we developed an ensemble of habitat suitability models using metaheuristic algorithms to explore the importance of a large number of environmental variables, including chemical, physical, and hydromorphological characteristics to determine the suitable habitat for reintroduction of brown trout in the Zwalm River basin (Flanders, Belgium), which is included in the Habitats Directive. Mean stream velocity, water temperature, hiding opportunities, and presence of pools or riffles were identified as the most important variables determining the habitat suitability. Brown trout mainly preferred streams with a relatively high mean reach stream velocity (0.2-1m/s), a low water temperature (7-15 degrees C), and the presence of pools. The ensemble of models indicated that most of the tributaries and headwaters were suitable for the species. Synthesis and applications. Our results indicate that this modeling approach can be used to support river management, not only for brown trout but also for other species in similar geographical regions. Specifically for the Zwalm River basin, future restoration of the physical habitat, removal of the remaining migration barriers and the development of suitable spawning grounds could promote the successful restoration of brown trout

    Experimental and simulation study of 1D silicon nanowire transistors using heavily doped channels

    Get PDF
    The experimental results from 8 nm diameter silicon nanowire junctionless field effect transistors with gate lengths of 150 nm are presented that demonstrate on-currents up to 1.15 mA/m for 1.0 V and 2.52 mA/m for 1.8 V gate overdrive with an off-current set at 100 nA/m. On- to off-current ratios above 108 with a subthreshold slope of 66 mV/dec are demonstrated at 25 oC. Simulations using drift-diffusion which include densitygradient quantum corrections provide excellent agreement with the experimental results. The simulations demonstrate that the present silicon-dioxide gate dielectric only allows the gate to be scaled to 25 nm length before short-channel effects significantly reduce the performance. If high-K dielectrics replace some parts of the silicon dioxide then the technology can be scaled to at least 10 nm gatelength
    • …
    corecore