1,932 research outputs found

    A Spatio-Temporal Framework for Managing Archeological Data

    Get PDF
    Space and time are two important characteristics of data in many domains. This is particularly true in the archaeological context where informa- tion concerning the discovery location of objects allows one to derive important relations between findings of a specific survey or even of different surveys, and time aspects extend from the excavation time, to the dating of archaeological objects. In recent years, several attempts have been performed to develop a spatio-temporal information system tailored for archaeological data. The first aim of this paper is to propose a model, called Star, for repre- senting spatio-temporal data in archaeology. In particular, since in this domain dates are often subjective, estimated and imprecise, Star has to incorporate such vague representation by using fuzzy dates and fuzzy relationships among them. Moreover, besides to the topological relations, another kind of spatial relations is particularly useful in archeology: the stratigraphic ones. There- fore, this paper defines a set of rules for deriving temporal knowledge from the topological and stratigraphic relations existing between two findings. Finally, considering the process through which objects are usually manually dated by archeologists, some existing automatic reasoning techniques may be success- fully applied to guide such process. For this purpose, the last contribution regards the translation of archaeological temporal data into a Fuzzy Temporal Constraint Network for checking the overall data consistency and reducing the vagueness of some dates based on their relationships with other ones

    Fuzzy Spatio-temporal Relations Analysis

    Full text link

    A Fuzzy Spatio-Temporal-based Approach for Activity Recognition

    Get PDF
    International audienceOver the last decade, there has been a significant deployment of systems dedicated to surveillance. These systems make use of real-time sensors that generate continuous streams of data. Despite their success in many cases, the increased number of sensors leads to a cognitive overload for the operator in charge of their analysis. However, the context and the application requires an ability to react in real-time. The research presented in this paper introduces a spatio-temporal-based approach the objective of which is to provide a qualitative interpretation of the behavior of an entity (e.g., a human or vehicle). The process is formally supported by a fuzzy logic-based approach, and designed in order to be as generic as possible

    On Quantifying Qualitative Geospatial Data: A Probabilistic Approach

    Full text link
    Living in the era of data deluge, we have witnessed a web content explosion, largely due to the massive availability of User-Generated Content (UGC). In this work, we specifically consider the problem of geospatial information extraction and representation, where one can exploit diverse sources of information (such as image and audio data, text data, etc), going beyond traditional volunteered geographic information. Our ambition is to include available narrative information in an effort to better explain geospatial relationships: with spatial reasoning being a basic form of human cognition, narratives expressing such experiences typically contain qualitative spatial data, i.e., spatial objects and spatial relationships. To this end, we formulate a quantitative approach for the representation of qualitative spatial relations extracted from UGC in the form of texts. The proposed method quantifies such relations based on multiple text observations. Such observations provide distance and orientation features which are utilized by a greedy Expectation Maximization-based (EM) algorithm to infer a probability distribution over predefined spatial relationships; the latter represent the quantified relationships under user-defined probabilistic assumptions. We evaluate the applicability and quality of the proposed approach using real UGC data originating from an actual travel blog text corpus. To verify the quality of the result, we generate grid-based maps visualizing the spatial extent of the various relations

    A qualitative approach to the identification, visualisation and interpretation of repetitive motion patterns in groups of moving point objects

    Get PDF
    Discovering repetitive patterns is important in a wide range of research areas, such as bioinformatics and human movement analysis. This study puts forward a new methodology to identify, visualise and interpret repetitive motion patterns in groups of Moving Point Objects (MPOs). The methodology consists of three steps. First, motion patterns are qualitatively described using the Qualitative Trajectory Calculus (QTC). Second, a similarity analysis is conducted to compare motion patterns and identify repetitive patterns. Third, repetitive motion patterns are represented and interpreted in a continuous triangular model. As an illustration of the usefulness of combining these hitherto separated methods, a specific movement case is examined: Samba dance, a rhythmical dance will? many repetitive movements. The results show that the presented methodology is able to successfully identify, visualize and interpret the contained repetitive motions

    A survey of qualitative spatial representations

    Get PDF
    Representation and reasoning with qualitative spatial relations is an important problem in artificial intelligence and has wide applications in the fields of geographic information system, computer vision, autonomous robot navigation, natural language understanding, spatial databases and so on. The reasons for this interest in using qualitative spatial relations include cognitive comprehensibility, efficiency and computational facility. This paper summarizes progress in qualitative spatial representation by describing key calculi representing different types of spatial relationships. The paper concludes with a discussion of current research and glimpse of future work

    Formalizing spatiotemporal knowledge in remote sensing applications to improve image interpretation

    Get PDF
    Technological tools allow the generation of large volumes of data. For example satellite images aid in the study of spatiotemporal phenomena in a range of disciplines such as urban planning environmental sciences and health care. Thus remote-sensing experts must handle various and complex image sets for their interpretations. The GIS community has undertaken significant work in describing spatiotemporal features and standard specifications nowadays provide design foundations for GIS software and spatial databases. We argue that this spatiotemporal knowledge and expertise would provide invaluable support for the field of image interpretation. As a result we propose a high level conceptual framework based on existing and standardized approaches offering enough modularity and adaptability to represent the various dimensions of spatiotemporal knowledge

    Representations for Cognitive Vision : a Review of Appearance-Based, Spatio-Temporal, and Graph-Based Approaches

    Get PDF
    The emerging discipline of cognitive vision requires a proper representation of visual information including spatial and temporal relationships, scenes, events, semantics and context. This review article summarizes existing representational schemes in computer vision which might be useful for cognitive vision, a and discusses promising future research directions. The various approaches are categorized according to appearance-based, spatio-temporal, and graph-based representations for cognitive vision. While the representation of objects has been covered extensively in computer vision research, both from a reconstruction as well as from a recognition point of view, cognitive vision will also require new ideas how to represent scenes. We introduce new concepts for scene representations and discuss how these might be efficiently implemented in future cognitive vision systems

    Using spatiotemporal patterns to qualitatively represent and manage dynamic situations of interest : a cognitive and integrative approach

    Get PDF
    Les situations spatio-temporelles dynamiques sont des situations qui évoluent dans l’espace et dans le temps. L’être humain peut identifier des configurations de situations dans son environnement et les utilise pour prendre des décisions. Ces configurations de situations peuvent aussi être appelées « situations d’intérêt » ou encore « patrons spatio-temporels ». En informatique, les situations sont obtenues par des systèmes d’acquisition de données souvent présents dans diverses industries grâce aux récents développements technologiques et qui génèrent des bases de données de plus en plus volumineuses. On relève un problème important dans la littérature lié au fait que les formalismes de représentation utilisés sont souvent incapables de représenter des phénomènes spatiotemporels dynamiques et complexes qui reflètent la réalité. De plus, ils ne prennent pas en considération l’appréhension cognitive (modèle mental) que l’humain peut avoir de son environnement. Ces facteurs rendent difficile la mise en œuvre de tels modèles par des agents logiciels. Dans cette thèse, nous proposons un nouveau modèle de représentation des situations d’intérêt s’appuyant sur la notion des patrons spatiotemporels. Notre approche utilise les graphes conceptuels pour offrir un aspect qualitatif au modèle de représentation. Le modèle se base sur les notions d’événement et d’état pour représenter des phénomènes spatiotemporels dynamiques. Il intègre la notion de contexte pour permettre aux agents logiciels de raisonner avec les instances de patrons détectés. Nous proposons aussi un outil de génération automatisée des relations qualitatives de proximité spatiale en utilisant un classificateur flou. Finalement, nous proposons une plateforme de gestion des patrons spatiotemporels pour faciliter l’intégration de notre modèle dans des applications industrielles réelles. Ainsi, les contributions principales de notre travail sont : Un formalisme de représentation qualitative des situations spatiotemporelles dynamiques en utilisant des graphes conceptuels. ; Une approche cognitive pour la définition des patrons spatio-temporels basée sur l’intégration de l’information contextuelle. ; Un outil de génération automatique des relations spatiales qualitatives de proximité basé sur les classificateurs neuronaux flous. ; Une plateforme de gestion et de détection des patrons spatiotemporels basée sur l’extension d’un moteur de traitement des événements complexes (Complex Event Processing).Dynamic spatiotemporal situations are situations that evolve in space and time. They are part of humans’ daily life. One can be interested in a configuration of situations occurred in the environment and can use it to make decisions. In the literature, such configurations are referred to as “situations of interests” or “spatiotemporal patterns”. In Computer Science, dynamic situations are generated by large scale data acquisition systems which are deployed everywhere thanks to recent technological advances. Spatiotemporal pattern representation is a research subject which gained a lot of attraction from two main research areas. In spatiotemporal analysis, various works extended query languages to represent patterns and to query them from voluminous databases. In Artificial Intelligence, predicate-based models represent spatiotemporal patterns and detect their instances using rule-based mechanisms. Both approaches suffer several shortcomings. For example, they do not allow for representing dynamic and complex spatiotemporal phenomena due to their limited expressiveness. Furthermore, they do not take into account the human’s mental model of the environment in their representation formalisms. This limits the potential of building agent-based solutions to reason about these patterns. In this thesis, we propose a novel approach to represent situations of interest using the concept of spatiotemporal patterns. We use Conceptual Graphs to offer a qualitative representation model of these patterns. Our model is based on the concepts of spatiotemporal events and states to represent dynamic spatiotemporal phenomena. It also incorporates contextual information in order to facilitate building the knowledge base of software agents. Besides, we propose an intelligent proximity tool based on a neuro-fuzzy classifier to support qualitative spatial relations in the pattern model. Finally, we propose a framework to manage spatiotemporal patterns in order to facilitate the integration of our pattern representation model to existing applications in the industry. The main contributions of this thesis are as follows: A qualitative approach to model dynamic spatiotemporal situations of interest using Conceptual Graphs. ; A cognitive approach to represent spatiotemporal patterns by integrating contextual information. ; An automated tool to generate qualitative spatial proximity relations based on a neuro-fuzzy classifier. ; A platform for detection and management of spatiotemporal patterns using an extension of a Complex Event Processing engine
    • …
    corecore