8,175 research outputs found

    Hierarchical Metadata-Aware Document Categorization under Weak Supervision

    Full text link
    Categorizing documents into a given label hierarchy is intuitively appealing due to the ubiquity of hierarchical topic structures in massive text corpora. Although related studies have achieved satisfying performance in fully supervised hierarchical document classification, they usually require massive human-annotated training data and only utilize text information. However, in many domains, (1) annotations are quite expensive where very few training samples can be acquired; (2) documents are accompanied by metadata information. Hence, this paper studies how to integrate the label hierarchy, metadata, and text signals for document categorization under weak supervision. We develop HiMeCat, an embedding-based generative framework for our task. Specifically, we propose a novel joint representation learning module that allows simultaneous modeling of category dependencies, metadata information and textual semantics, and we introduce a data augmentation module that hierarchically synthesizes training documents to complement the original, small-scale training set. Our experiments demonstrate a consistent improvement of HiMeCat over competitive baselines and validate the contribution of our representation learning and data augmentation modules.Comment: 9 pages; Accepted to WSDM 202

    A Neural Attention Model for Categorizing Patient Safety Events

    Full text link
    Medical errors are leading causes of death in the US and as such, prevention of these errors is paramount to promoting health care. Patient Safety Event reports are narratives describing potential adverse events to the patients and are important in identifying and preventing medical errors. We present a neural network architecture for identifying the type of safety events which is the first step in understanding these narratives. Our proposed model is based on a soft neural attention model to improve the effectiveness of encoding long sequences. Empirical results on two large-scale real-world datasets of patient safety reports demonstrate the effectiveness of our method with significant improvements over existing methods.Comment: ECIR 201

    How did the discussion go: Discourse act classification in social media conversations

    Full text link
    We propose a novel attention based hierarchical LSTM model to classify discourse act sequences in social media conversations, aimed at mining data from online discussion using textual meanings beyond sentence level. The very uniqueness of the task is the complete categorization of possible pragmatic roles in informal textual discussions, contrary to extraction of question-answers, stance detection or sarcasm identification which are very much role specific tasks. Early attempt was made on a Reddit discussion dataset. We train our model on the same data, and present test results on two different datasets, one from Reddit and one from Facebook. Our proposed model outperformed the previous one in terms of domain independence; without using platform-dependent structural features, our hierarchical LSTM with word relevance attention mechanism achieved F1-scores of 71\% and 66\% respectively to predict discourse roles of comments in Reddit and Facebook discussions. Efficiency of recurrent and convolutional architectures in order to learn discursive representation on the same task has been presented and analyzed, with different word and comment embedding schemes. Our attention mechanism enables us to inquire into relevance ordering of text segments according to their roles in discourse. We present a human annotator experiment to unveil important observations about modeling and data annotation. Equipped with our text-based discourse identification model, we inquire into how heterogeneous non-textual features like location, time, leaning of information etc. play their roles in charaterizing online discussions on Facebook

    On Horizontal and Vertical Separation in Hierarchical Text Classification

    Get PDF
    Hierarchy is a common and effective way of organizing data and representing their relationships at different levels of abstraction. However, hierarchical data dependencies cause difficulties in the estimation of "separable" models that can distinguish between the entities in the hierarchy. Extracting separable models of hierarchical entities requires us to take their relative position into account and to consider the different types of dependencies in the hierarchy. In this paper, we present an investigation of the effect of separability in text-based entity classification and argue that in hierarchical classification, a separation property should be established between entities not only in the same layer, but also in different layers. Our main findings are the followings. First, we analyse the importance of separability on the data representation in the task of classification and based on that, we introduce a "Strong Separation Principle" for optimizing expected effectiveness of classifiers decision based on separation property. Second, we present Hierarchical Significant Words Language Models (HSWLM) which capture all, and only, the essential features of hierarchical entities according to their relative position in the hierarchy resulting in horizontally and vertically separable models. Third, we validate our claims on real-world data and demonstrate that how HSWLM improves the accuracy of classification and how it provides transferable models over time. Although discussions in this paper focus on the classification problem, the models are applicable to any information access tasks on data that has, or can be mapped to, a hierarchical structure.Comment: Full paper (10 pages) accepted for publication in proceedings of ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR'16

    Efficient Correlated Topic Modeling with Topic Embedding

    Full text link
    Correlated topic modeling has been limited to small model and problem sizes due to their high computational cost and poor scaling. In this paper, we propose a new model which learns compact topic embeddings and captures topic correlations through the closeness between the topic vectors. Our method enables efficient inference in the low-dimensional embedding space, reducing previous cubic or quadratic time complexity to linear w.r.t the topic size. We further speedup variational inference with a fast sampler to exploit sparsity of topic occurrence. Extensive experiments show that our approach is capable of handling model and data scales which are several orders of magnitude larger than existing correlation results, without sacrificing modeling quality by providing competitive or superior performance in document classification and retrieval.Comment: KDD 2017 oral. The first two authors contributed equall
    corecore