35 research outputs found

    Modeling Timing Requirements in Problem Frames Using CCSL

    Get PDF
    International audienceAs the embedded systems are becoming more and more complex, requirements engineering approaches are needed for modeling requirements, especially the timing requirements. Among various requirements engineering approaches, the Problem Frames(PF) approach is particularly useful in requirements modeling for the embedded systems due to the characteristic that PF pays special attention to the environment entities that will interact with the to-be software. However, no concern is given on timing requirements of PF at present. This paper studies how to add timing constraints on problem domains in PF. Our approach is to integrate the problem representation frame in PF with the timing representation mechanism of MARTE(Modeling and Analysis of Real Time and Embedded systems). A unified problem frame modeling process integrated with timing constraints is provided, and problem frame requirements with timing constraints expressed by MARTE/CCSL (Clock Constraint Specification Language) and clock construction operators are obtained

    Early timing analysis based on scenario requirements and platform models

    Get PDF
    Distributed, software-intensive systems (e.g., in the automotive sector) must fulfill communication requirements under hard real-time constraints. The requirements have to be documented and validated carefully using a systematic requirements engineering (RE) approach, for example, by applying scenario-based requirements notations. The resources of the execution platforms and their properties (e.g., CPU frequency or bus throughput) induce effects on the timing behavior, which may lead to violations of the real-time requirements. Nowadays, the platform properties and their induced timing effects are verified against the real-time requirements by means of timing analysis techniques mostly implemented in commercial-off-the-shelf tools. However, such timing analyses are conducted in late development phases since they rely on artifacts produced during these phases (e.g., the platform-specific code). In order to enable early timing analyses already during RE, we extend a scenario-based requirements notation with allocation means to platform models and define operational semantics for the purpose of simulation-based, platform-aware timing analyses. We illustrate and evaluate the approach with an automotive software-intensive system

    Modeling and Verifying Uncertainty-Aware Timing Behaviors using Parametric Logical Time Constraint

    Get PDF
    International audienceThe Clock Constraint Specification Language (CCSL) is a logical time based modeling language to formalize timing behaviors of real-time and embedded systems. However, it cannot capture timing behaviors that contain uncertainties, e.g., uncertainty in execution time and period. This limits the application of the language to real-world systems, as uncertainty often exists in practice due to both internal and external factors. To capture uncertainties in timing behaviors, in this paper we extend CCSL by introducing parameters into constraints. We then propose an approach to transform parametric CCSL constraints into SMT formulas for efficient verification. We apply our approach to an industrial case which is proposed as the FMTV (Formal Methods for Timing Verification) Challenge in 2015, which shows that timing behaviors with uncertainties can be effectively modeled and verified using the parametric CCSL

    Explicit Control of Dataflow Graphs with MARTE/CCSL

    Get PDF
    International audienceProcess Networks are a means to describe streaming embedded applications. They rely on explicit representation of task concurrency, pipeline and data-flow. Originally, Data-Flow Process Network (DFPN) representations are independent from any execution platform support model. Such independence is actually what allows looking next for adequate mappings. Mapping deals with scheduling and distribution of computation tasks onto processing resources, but also distribution of communications to interconnects and memory resources. This design approach requires a level of description of execution platforms that is both accurate and simple. Recent platforms are composed of repeated elements with global interconnection (GPU, MPPA). A parametric description could help achieving both requirements. Then, we argue that a model-driven engineering approach may allow to unfold and expand an original DFPN model, in our case a so-called Synchronous DataFlow graph (SDF) into a model such that: a) the original description is a quotient refolding of the expanded one, and b) the mapping to a platform model is a grouping of tasks according to their resource allocation. Then, given such unfolding, we consider how to express the allocation and the real-time constraints. We do this by capturing the entire system in CCSL (Clock Constraint Specification Language). CCSL allows to capture linear but also synchronous constraints. Lastly, the system can be checked for the existence of a schedule satisfying all the constraints using a state space exploration technique. The approach is validated on a typical embedded system application allocated on a multi-core platform

    Model-based specification of timing requirements

    Full text link

    Property driven verification framework: application to real time property for UML MARTE software design

    Get PDF
    Les techniques formelles de la famille « vérification de modèles » (« model checking ») se heurtent au problème de l’explosion combinatoire. Ceci limite les perspectives d’exploitation dans des projets industriels. Ce problème est provoqué par la combinatoire dans la construction de l’espace des états possibles durant l’exécution des systèmes modélisés. Le nombre d’états pour des modèles de systèmes industriels réalistes dépasse régulièrement les capacités des ressources disponibles en calcul et stockage. Cette thèse défend l’idée qu’il est possible de réduire cette combinatoire en spécialisant les outils pour des familles de propriétés. Elle propose puis valide expérimentalement un ensemble de méthodes pour le développement de ce type d’outils en suivant une approche guidée par les propriétés appliquée au contexte temps réel. Il s’agit donc de construire des outils d’analyse performants pour des propriétés temps réel qui soient exploitables pour des modèles industriels de taille réaliste. Les langages considérés sont, d’une part UML étendu par le profil MARTE pour la modélisation par les utilisateurs, et d’autre part les réseaux de Petri temporisés comme support pour la vérification. Les propositions sont validées sur un cas d’étude industriel réaliste issu du monde avionique : l’étude de la latence et la fraicheur des données dans un système de gestion des alarmes exploitant les technologies d’Avionique Modulaire Intégrée. Ces propositions ont été mise en oeuvre comme une boite à outils qui intègre les cinq contributions suivantes: la définition de la sémantique d’exécution spécifiques aux propriétés temps réel pour les modèles d’architecture et de comportement spécifiés en UML/MARTE; la spécification des exigences temps réel en s’appuyant sur un ensemble de patrons de vérification atomiques dédiés aux propriété temps réel; une méthode itérative d’analyse à base d’observateurs pour des réseaux de Petri temporisés; des techniques de réduction de l’espace d’états spécifiques aux propriétés temps réel pour des Réseaux de Petri temporisés; une approche pour l’analyse des erreurs détectées par « vérification des modèles » en s’appuyant sur des idées inspirées de la « fouille de données » (« data mining »). ABSTRACT : Automatic formal verification such as model checking faces the combinatorial explosion issue. This limits its application in indus- trial projects. This issue is caused by the explosion of the number of states during system’s execution , as it may easily exceed the amount of available computing or storage resources. This thesis designs and experiments a set of methods for the development of scalable verification based on the property-driven approach. We propose efficient approaches based on model checking to verify real-time requirements expressed in large scale UML-MARTE real-time system designs. We rely on the UML and its profile MARTE as the end-user modeling language, and on the Time Petri Net (TPN) as the verification language. The main contribution of this thesis is the design and implementation of a property-driven verification prototype toolset dedicated to real-time properties verification for UML-MARTE real-time software designs. We validate this toolset using an avionic use case and its user requirements. The whole prototype toolset includes five contributions: definition of real-time property specific execution semantics for UML-MARTE architecture and behavior models; specification of real- time requirements relying on a set of verification dedicated atomic real- time property patterns; real-time property specific observer-based model checking approach in TPN; real-time property specific state space reduction approach for TPN; and fault localization approach in model checking

    A logic-based approach for the verification of UML timed models

    Get PDF
    This article presents a novel technique to formally verify models of real-time systems captured through a set of heterogeneous UML diagrams. The technique is based on the following key elements: (i) a subset of Unified Modeling Language (UML) diagrams, called Coretto UML (C-UML), which allows designers to describe the components of the system and their behavior through several kinds of diagrams (e.g., state machine diagrams, sequence diagrams, activity diagrams, interaction overview diagrams), and stereotypes taken from the UML Profile for Modeling and Analysis of Real-Time and Embedded Systems; (ii) a formal semantics of C-UML diagrams, defined through formulae of the metric temporal logic Tempo Reale ImplicitO (TRIO); and (iii) a tool, called Corretto, which implements the aforementioned semantics and allows users to carry out formal verification tasks on modeled systems. We validate the feasibility of our approach through a set of different case studies, taken from both the academic and the industrial domain
    corecore