77 research outputs found

    Modeling Time Aware Shaping in an Ethernet Fronthaul

    Get PDF
    An Opnet model of a time-aware shaper (TAS) based on the IEEE 802.1Qbv standard is presented. The TAS model is assumed to be the scheduling entity in an Ethernet-based fronthaul network, comprising of Ethernet switches. The fronthaul transports different traffic flow types as envisioned in next generation Radio Access Networks (RANs), including those for a timing protocol (based on the precision time protocol) and those from the implementation of different RAN functional subdivisions. The performance of the TAS is compared to that of a strict priority regime and is quantified through the frame delay variation of the high priority traffic when this contends with lower priority traffic. The results show that with the TAS implementation, contention effects can be overcome and frame delay variation (frame jitter) can be removed. Timing instability in the significant events of the scheduler is considered and a solution to overcome this issue is proposed

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book

    Next-Generation Optical Fronthaul in the iCirrus Project

    Get PDF
    We discuss next-generation fronthaul solutions for 5G and legacy radio access networks. Architectures, findings and experimental results from recent lab and field trial activities are reported

    Ethernet Fronthaul and Time-Sensitive Networking for 5G and Beyond Mobile Networks

    Get PDF
    Ethernet has been proposed to be used as the transport technology in the future fronthaul network. For this purpose, a model of switched Ethernet architecture is developed and presented in order to characterise the performance of an Ethernet mobile fronthaul network. The effects of traditional queuing regimes, including Strict Priority (SP) and Weighted Round Robin (WRR), on the delay and delay variation of LTE streams under the presence of background Ethernet traffic are investigated using frame inter-arrival delay statistics. The results show the effect of different background traffic rates and frame sizes on the mean and Standard Deviation (STD) of the LTE traffic frame inter-arrival delay and the importance of selecting the most suitable queuing regime based on the priority level and time sensitivity of the different traffic types. While SP can be used with traffic types that require low delay and Frame Delay variation (FDV), this queuing regime does not guarantee that the time sensitive traffic will not encounter an increase in delay and FDV as a result of contention due to the lack of pre-emptive mechanisms. Thus, the need for a queuing regime that can overcome the limitations of traditional queuing regimes is shown. To this extent, Time Sensitive Networking (TSN) for an Ethernet fronthaul network is modelled. Different modelling approaches for a Time Aware Shaper (TAS) based on the IEEE 802.1Qbv standard in Opnet/Riverbed are presented. The TAS model is assumed to be the scheduling entity in an Ethernet-based fronthaul network model, located in both the Ethernet switches and traffic sources. The TAS with/without queuing at the end stations has been presented as well. The performance of the TAS is compared to that of SP and WRR and is quantified through the FDV of the high priority traffic when this contends with lower priority traffic. The results show that with the TAS, contentioninduced FDV can be minimized or even completely removed. Furthermore, variations in the processing times of networking equipment, due to the envisaged softwarization of the next generation mobile network, which can lead to time variation in the generation instances of traffic in the Ethernet fronthaul network (both in the end-nodes and in switches/aggregators), have been considered in the TAS design. The need for a Global Scheduler (GS) and Software Defined Networking (SDN) with TAS is also discussed. An Upper Physical layer functional Split (UPS), specifically a pre-resource mapper split, for an evolved Ethernet fronthaul network is modelled. Using this model and by incorporating additional traffic sources, an investigation of the frame delay and FDV limitations in this evolved fronthaul is carried out. The results show that contention in Ethernet switch output ports causes an increase in the delay and FDV beyond proposed specifications for the UPS and other time sensitive traffic, such as legacy Common Public Radio Interface (CPRI)-type traffic. While TAS can significantly reduce or even remove FDV for UPS traffic and CPRI-type traffic, it is shown that TAS design aspects have to carefully consider the different transmission characteristics, especially the transmission pattern, of the contending traffic flows. For this reason, different traffic allocations within TAS window sections are proposed. Furthermore, it is demonstrated that increased link rates will be important in enabling longer fronthaul fibre spans (more than ten Kilometres fibre spans with ten Gigabit Ethernet links). The results also show that using multiple hops (Ethernet switches/aggregators) in the network can result in a reduction in the amount of UPS traffic that can be received within the delay and FDV specifications. As a result, careful considerations of the fibre span length and the number of hops in the fronthaul network should be made

    Results and achievements of the ALLIANCE Project: New network solutions for 5G and beyond

    Get PDF
    Leaving the current 4th generation of mobile communications behind, 5G will represent a disruptive paradigm shift integrating 5G Radio Access Networks (RANs), ultra-high-capacity access/metro/core optical networks, and intra-datacentre (DC) network and computational resources into a single converged 5G network infrastructure. The present paper overviews the main achievements obtained in the ALLIANCE project. This project ambitiously aims at architecting a converged 5G-enabled network infrastructure satisfying those needs to effectively realise the envisioned upcoming Digital Society. In particular, we present two networking solutions for 5G and beyond 5G (B5G), such as Software Defined Networking/Network Function Virtualisation (SDN/NFV) on top of an ultra-high-capacity spatially and spectrally flexible all-optical network infrastructure, and the clean-slate Recursive Inter-Network Architecture (RINA) over packet networks, including access, metro, core and DC segments. The common umbrella of all these solutions is the Knowledge-Defined Networking (KDN)-based orchestration layer which, by implementing Artificial Intelligence (AI) techniques, enables an optimal end-to-end service provisioning. Finally, the cross-layer manager of the ALLIANCE architecture includes two novel elements, namely the monitoring element providing network and user data in real time to the KDN, and the blockchain-based trust element in charge of exchanging reliable and confident information with external domains.This work has been partially funded by the Spanish Ministry of Economy and Competitiveness under contract FEDER TEC2017-90034-C2 (ALLIANCE project) and by the Generalitat de Catalunya under contract 2017SGR-1037 and 2017SGR-605.Peer ReviewedPostprint (published version

    Time-Sensitive Networking for Industrial Automation: Challenges, Opportunities, and Directions

    Full text link
    With the introduction of Cyber-Physical Systems (CPS) and Internet of Things (IoT) into industrial applications, industrial automation is undergoing tremendous change, especially with regard to improving efficiency and reducing the cost of products. Industrial automation applications are often required to transmit time- and safety-critical data to monitor and control industrial processes, especially for critical control systems. There are a number of solutions to meet these requirements (e.g., priority-based real-time schedules and closed-loop feedback control systems). However, due to their different processing capabilities (e.g., in the end devices and network switches), different vendors may come out with distinct solutions, and this makes the large-scale integration of devices from different vendors difficult or impossible. IEEE 802.1 Time-Sensitive Networking (TSN) is a standardization group formed to enhance and optimize the IEEE 802.1 network standards, especially for Ethernet-based networks. These solutions can be evolved and adapted into a cross-industry scenario, such as a large-scale distributed industrial plant, which requires multiple industrial entities working collaboratively. This paper provides a comprehensive review on the current advances in TSN standards for industrial automation. We present the state-of-the-art IEEE TSN standards and discuss the opportunities and challenges when integrating each protocol into the industry domains. Finally, we discuss some promising research about applying the TSN technology to industrial automation applications
    corecore