968 research outputs found

    Masked and Swapped Sequence Modeling for Next Novel Basket Recommendation in Grocery Shopping

    Full text link
    Next basket recommendation (NBR) is the task of predicting the next set of items based on a sequence of already purchased baskets. It is a recommendation task that has been widely studied, especially in the context of grocery shopping. In next basket recommendation (NBR), it is useful to distinguish between repeat items, i.e., items that a user has consumed before, and explore items, i.e., items that a user has not consumed before. Most NBR work either ignores this distinction or focuses on repeat items. We formulate the next novel basket recommendation (NNBR) task, i.e., the task of recommending a basket that only consists of novel items, which is valuable for both real-world application and NBR evaluation. We evaluate how existing NBR methods perform on the NNBR task and find that, so far, limited progress has been made w.r.t. the NNBR task. To address the NNBR task, we propose a simple bi-directional transformer basket recommendation model (BTBR), which is focused on directly modeling item-to-item correlations within and across baskets instead of learning complex basket representations. To properly train BTBR, we propose and investigate several masking strategies and training objectives: (i) item-level random masking, (ii) item-level select masking, (iii) basket-level all masking, (iv) basket-level explore masking, and (v) joint masking. In addition, an item-basket swapping strategy is proposed to enrich the item interactions within the same baskets. We conduct extensive experiments on three open datasets with various characteristics. The results demonstrate the effectiveness of BTBR and our masking and swapping strategies for the NNBR task. BTBR with a properly selected masking and swapping strategy can substantially improve NNBR performance.Comment: To appear at RecSys'2

    User-oriented recommender systems in retail

    Get PDF
    User satisfaction is considered a key objective for all service provider platforms, regardless of the nature of the service, encompassing domains such as media, entertainment, retail, and information. While the goal of satisfying users is the same across different domains and services, considering domain-specific characteristics is of paramount importance to ensure users have a positive experience with a given system. User interaction data with a system is one of the main sources of data that facilitates achieving this goal. In this thesis, we investigate how to learn from domain-specific user interactions. We focus on recommendation as our main task, and retail as our main domain. We further explore the finance domain and the demand forecasting task as additional directions to understand whether our methodology and findings generalize to other tasks and domains. The research in this thesis is organized around the following dimensions: 1) Characteristics of multi-channel retail: we consider a retail setting where interaction data comes from both digital (i.e., online) and in-store (i.e., offline) shopping; 2) From user behavior to recommendation: we conduct extensive descriptive studies on user interaction log datasets that inform the design of recommender systems in two domains, retail and finance. Our key contributions in characterizing multi-channel retail are two-fold. First, we propose a neural model that makes use of sales in multiple shopping channels in order to improve the performance of demand forecasting in a target channel. Second, we provide the first study of user behavior in a multi-channel retail setting, which results in insights about the channel-specific properties of user behavior, and their effects on the performance of recommender systems. We make three main contributions in designing user-oriented recommender systems. First, we provide a large-scale user behavior study in the finance domain, targeted at understanding financial information seeking behavior in user interactions with company filings. We then propose domain-specific user-oriented filing recommender systems that are informed by the findings of the user behavior analysis. Second, we analyze repurchasing behavior in retail, specifically in the grocery shopping domain. We then propose a repeat consumption-aware neural recommender for this domain. Third, we focus on scalable recommendation in retail and propose an efficient recommender system that explicitly models users' personal preferences that are reflected in their purchasing history

    User-oriented recommender systems in retail

    Get PDF
    User satisfaction is considered a key objective for all service provider platforms, regardless of the nature of the service, encompassing domains such as media, entertainment, retail, and information. While the goal of satisfying users is the same across different domains and services, considering domain-specific characteristics is of paramount importance to ensure users have a positive experience with a given system. User interaction data with a system is one of the main sources of data that facilitates achieving this goal. In this thesis, we investigate how to learn from domain-specific user interactions. We focus on recommendation as our main task, and retail as our main domain. We further explore the finance domain and the demand forecasting task as additional directions to understand whether our methodology and findings generalize to other tasks and domains. The research in this thesis is organized around the following dimensions: 1) Characteristics of multi-channel retail: we consider a retail setting where interaction data comes from both digital (i.e., online) and in-store (i.e., offline) shopping; 2) From user behavior to recommendation: we conduct extensive descriptive studies on user interaction log datasets that inform the design of recommender systems in two domains, retail and finance. Our key contributions in characterizing multi-channel retail are two-fold. First, we propose a neural model that makes use of sales in multiple shopping channels in order to improve the performance of demand forecasting in a target channel. Second, we provide the first study of user behavior in a multi-channel retail setting, which results in insights about the channel-specific properties of user behavior, and their effects on the performance of recommender systems. We make three main contributions in designing user-oriented recommender systems. First, we provide a large-scale user behavior study in the finance domain, targeted at understanding financial information seeking behavior in user interactions with company filings. We then propose domain-specific user-oriented filing recommender systems that are informed by the findings of the user behavior analysis. Second, we analyze repurchasing behavior in retail, specifically in the grocery shopping domain. We then propose a repeat consumption-aware neural recommender for this domain. Third, we focus on scalable recommendation in retail and propose an efficient recommender system that explicitly models users' personal preferences that are reflected in their purchasing history

    Personalized Market Basket Prediction with Temporal Annotated Recurring Sequences

    Get PDF
    Nowadays, a hot challenge for supermarket chains is to offer personalized services to their customers. Market basket prediction, i.e., supplying the customer a shopping list for the next purchase according to her current needs, is one of these services. Current approaches are not capable of capturing at the same time the different factors influencing the customer's decision process: co-occurrence, sequentuality, periodicity and recurrency of the purchased items. To this aim, we define a pattern Temporal Annotated Recurring Sequence (TARS) able to capture simultaneously and adaptively all these factors. We define the method to extract TARS and develop a predictor for next basket named TBP (TARS Based Predictor) that, on top of TARS, is able to understand the level of the customer's stocks and recommend the set of most necessary items. By adopting the TBP the supermarket chains could crop tailored suggestions for each individual customer which in turn could effectively speed up their shopping sessions. A deep experimentation shows that TARS are able to explain the customer purchase behavior, and that TBP outperforms the state-of-the-art competitors
    • …
    corecore