2,813 research outputs found

    Supply chain risk management : systematic literature review and a conceptual framework for capturing interdependencies between risks

    Get PDF
    The purpose of this research is to conduct a comprehensive and systematic review of the literature in the field of 'Supply Chain Risk Management' and identify important research gaps for potential research. Furthermore, a conceptual risk management framework is also proposed that encompasses holistic view of the field. 'Systematic Literature Review' method is used to examine quality articles published over a time period of almost 15 years (2000 - June, 2014). The findings of the study are validated through text mining software. Systematic literature review has identified the progress of research based on various descriptive and thematic typologies. The review and text mining analysis have also provided an insight into major research gaps. Based on the identified gaps, a framework is developed that can help researchers model interdependencies between risk factors

    Mitigating Space Industry Supply Chain Risk Thru Risk-Based Analysis

    Get PDF
    Using risk-based analysis to consider supply chain disruptions and uncertainty along with potential mitigation strategies in the early stages of space industry projects can be used avoid schedule delays, cost overruns, and lead to successful project outcomes. Space industry projects, especially launch vehicles, are complicated assemblies of high-technology and specialized components. Components are engineered, procured, manufactured, and assembled for specific missions or projects, unlike make-to-stock manufacturing where assemblies are produced at a mass production rate for customers to choose off the shelf or lot, like automobiles. The supply chain for a space industry project is a large, complicated web where one disruption, especially for sole-sourced components, could ripple through the project causing delays at multiple project milestones. This ripple effect can even cause the delay or cancelation of the entire project unless project managers develop and employ risk mitigations strategies against supply chain disruption and uncertainty. The unpredictability of when delays and disruptions may occur makes managing these projects extremely difficult. By using risk-based analysis, project managers can better plan for and mitigate supply chain risk and uncertainty for space industry projects to better manage project success. Space industry project supply chain risk and uncertainty can be evaluated through risk assessments at major project milestones and during the procurement process. Mitigations for identified risks can be evaluated and implemented to better manage project success. One mitigation strategy to supply chain risk and uncertainty is implementing a dual or multi-supplier sourcing procurement strategy. This research explores using a risk-based analysis to identify where this mitigation strategy can be beneficial for space industry projects and how its implementation affects project success. First a supply chain risk assessment and mitigation decision tool will be used at major project milestones to show where a multi-sourcing strategy may be beneficial. Next, updated supplier quote evaluation tools will confirm the usage of multiple suppliers for procurement. Modeling and simulation are then used to show the impact of that strategy on the project success metrics of cost and schedule

    Evaluation of control strategies for managing supply chain risks using Bayesian belief networks

    Get PDF
    Supply chains have become complex and vulnerable and therefore, researchers are developing effective techniques in order to capture the complex structure of the supply network and interdependency between supply chain risks. Researchers have recently started using Bayesian Belief Networks for modelling supply chain risks. However, these models are still focused on limited domains of supply chain risk management like supplier selection, supplier performance evaluation and ranking. We have developed a comprehensive risk management process using Bayesian networks that captures all three stages of risk management including risk identification, risk assessment and risk evaluation. Our proposed new risk measures and evaluation scheme of different combinations of control strategies are considered as an important contribution to the literature. We have modelled supply network as a Bayesian Belief Network incorporating the supply network configuration, probabilistic interdependency between risks, resulting losses, risk mitigation control strategies and associated costs. An illustrative example is presented and three different models are solved corresponding to different risk attitudes of the decision maker. Based on our results, it is not always viable to implement control strategy at the most important risk factor because of the consideration of mitigation cost, relative loss and probabilistic interdependency between connected risk factors

    A new approach for supply chain risk management: Mapping SCOR into Bayesian network

    Get PDF
    Purpose: Increase of costs and complexities in organizations beside the increase of uncertainty and risks have led the managers to use the risk management in order to decrease risk taking and deviation from goals. SCRM has a close relationship with supply chain performance. During the years different methods have been used by researchers in order to manage supply chain risk but most of them are either qualitative or quantitative. Supply chain operation reference (SCOR) is a standard model for SCP evaluation which have uncertainty in its metrics. In This paper by combining qualitative and quantitative metrics of SCOR, supply chain performance will be measured by Bayesian Networks. Design/methodology/approach: First qualitative assessment will be done by recognizing uncertain metrics of SCOR model and then by quantifying them, supply chain performance will be measured by Bayesian Networks (BNs) and supply chain operations reference (SCOR) in which making decision on uncertain variables will be done by predictive and diagnostic capabilities. Findings: After applying the proposed method in one of the biggest automotive companies in Iran, we identified key factors of supply chain performance based on SCOR model through predictive and diagnostic capability of Bayesian Networks. After sensitivity analysis, we find out that ‘Total cost’ and its criteria that include costs of labors, warranty, transportation and inventory have the widest range and most effect on supply chain performance. So, managers should take their importance into account for decision making. We can make decisions simply by running model in different situations. Research limitations/implications: A more precise model consisted of numerous factors but it is difficult and sometimes impossible to solve big models, if we insert all of them in a Bayesian model. We have adopted real world characteristics with our software and method abilities. On the other hand, fewer data exist for some of the performance metrics. Practical implications: Mangers often use simple qualitative metrics for SCRM. However, combining qualitative and quantitative metrics will be more useful. Industries can recognize the important uncertain metrics by predicting supply chain performance and diagnosing possible happenings. Originality/value: This paper proposed a Bayesian method based on SCOR metrics which has the ability to manage supply chain risks and improve supply chain performance. This is the only presented case study for measuring supply chain performance by SCOR metrics.Peer Reviewe
    corecore