81 research outputs found

    Local Field Potential Modeling Predicts Dense Activation in Cerebellar Granule Cells Clusters under LTP and LTD Control

    Get PDF
    Local field-potentials (LFPs) are generated by neuronal ensembles and contain information about the activity of single neurons. Here, the LFPs of the cerebellar granular layer and their changes during long-term synaptic plasticity (LTP and LTD) were recorded in response to punctate facial stimulation in the rat in vivo. The LFP comprised a trigeminal (T) and a cortical (C) wave. T and C, which derived from independent granule cell clusters, co-varied during LTP and LTD. To extract information about the underlying cellular activities, the LFP was reconstructed using a repetitive convolution (ReConv) of the extracellular potential generated by a detailed multicompartmental model of the granule cell. The mossy fiber input patterns were determined using a Blind Source Separation (BSS) algorithm. The major component of the LFP was generated by the granule cell spike Na+ current, which caused a powerful sink in the axon initial segment with the source located in the soma and dendrites. Reproducing the LFP changes observed during LTP and LTD required modifications in both release probability and intrinsic excitability at the mossy fiber-granule cells relay. Synaptic plasticity and Golgi cell feed-forward inhibition proved critical for controlling the percentage of active granule cells, which was 11% in standard conditions but ranged from 3% during LTD to 21% during LTP and raised over 50% when inhibition was reduced. The emerging picture is that of independent (but neighboring) trigeminal and cortical channels, in which synaptic plasticity and feed-forward inhibition effectively regulate the number of discharging granule cells and emitted spikes generating “dense” activity clusters in the cerebellar granular layer

    Sensory Coding by Cerebellar Mossy Fibres through Inhibition-Driven Phase Resetting and Synchronisation

    Get PDF
    Temporal coding of spike-times using oscillatory mechanisms allied to spike-time dependent plasticity could represent a powerful mechanism for neuronal communication. However, it is unclear how temporal coding is constructed at the single neuronal level. Here we investigate a novel class of highly regular, metronome-like neurones in the rat brainstem which form a major source of cerebellar afferents. Stimulation of sensory inputs evoked brief periods of inhibition that interrupted the regular firing of these cells leading to phase-shifted spike-time advancements and delays. Alongside phase-shifting, metronome cells also behaved as band-pass filters during rhythmic sensory stimulation, with maximal spike-stimulus synchronisation at frequencies close to the idiosyncratic firing frequency of each neurone. Phase-shifting and band-pass filtering serve to temporally align ensembles of metronome cells, leading to sustained volleys of near-coincident spike-times, thereby transmitting synchronised sensory information to downstream targets in the cerebellar cortex

    DEVELOPMENT OF A CEREBELLAR MEAN FIELD MODEL: THE THEORETICAL FRAMEWORK, THE IMPLEMENTATION AND THE FIRST APPLICATION

    Get PDF
    Brain modeling constantly evolves to improve the accuracy of the simulated brain dynamics with the ambitious aim to build a digital twin of the brain. Specific models tuned on brain regions specific features empower the brain simulations introducing bottom-up physiology properties into data-driven simulators. Despite the cerebellum contains 80 % of the neurons and is deeply involved in a wide range of functions, from sensorimotor to cognitive ones, a specific cerebellar model is still missing. Furthermore, its quasi-crystalline multi-layer circuitry deeply differs from the cerebral cortical one, therefore is hard to imagine a unique general model suitable for the realistic simulation of both cerebellar and cerebral cortex. The present thesis tackles the challenge of developing a specific model for the cerebellum. Specifically, multi-neuron multi-layer mean field (MF) model of the cerebellar network, including Granule Cells, Golgi Cells, Molecular Layer Interneurons, and Purkinje Cells, was implemented, and validated against experimental data and the corresponding spiking neural network microcircuit model. The cerebellar MF model was built using a system of interdependent equations, where the single neuronal populations and topological parameters were captured by neuron-specific inter- dependent Transfer Functions. The model time resolution was optimized using Local Field Potentials recorded experimentally with high-density multielectrode array from acute mouse cerebellar slices. The present MF model satisfactorily captured the average discharge of different microcircuit neuronal populations in response to various input patterns and was able to predict the changes in Purkinje Cells firing patterns occurring in specific behavioral conditions: cortical plasticity mapping, which drives learning in associative tasks, and Molecular Layer Interneurons feed-forward inhibition, which controls Purkinje Cells activity patterns. The cerebellar multi-layer MF model thus provides a computationally efficient tool that will allow to investigate the causal relationship between microscopic neuronal properties and ensemble brain activity in health and pathological conditions. Furthermore, preliminary attempts to simulate a pathological cerebellum were done in the perspective of introducing our multi-layer cerebellar MF model in whole-brain simulators to realize patient-specific treatments, moving ahead towards personalized medicine. Two preliminary works assessed the relevant impact of the cerebellum on whole-brain dynamics and its role in modulating complex responses in causal connected cerebral regions, confirming that a specific model is required to further investigate the cerebellum-on- cerebrum influence. The framework presented in this thesis allows to develop a multi-layer MF model depicting the features of a specific brain region (e.g., cerebellum, basal ganglia), in order to define a general strategy to build up a pool of biology grounded MF models for computationally feasible simulations. Interconnected bottom-up MF models integrated in large-scale simulators would capture specific features of different brain regions, while the applications of a virtual brain would have a substantial impact on the reality ranging from the characterization of neurobiological processes, subject-specific preoperative plans, and development of neuro-prosthetic devices

    High frequency field potentials of the cerebellar cortex

    Get PDF
    The cerebellum plays a crucial role in motor coordination along with basal ganglia and the motor areas of the cerebral cortex. Both somatosensory and the cerebro-cerebral pathways bring in massive amounts of neural information to the cerebellum. The output of the cerebellar cortex projects to various motor cortices as well as down to the spinal cord to make its contributions to the motor function. The origin and function of the field potential oscillations in the cerebellum, especially in the high frequencies, have not been explored sufficiently. The primary objective of this study was to investigate the spatio-temporal characteristics of high frequency field potentials (150-350Hz) in the cerebellar cortex in a behavioral context. To this end, the paramedian lobule in rats was recorded using micro electro-corticogram (µ-ECoG) electrode arrays while the animal performed a lever press task using the forelimb. The phase synchrony analysis shows that the high frequency oscillations recorded at multiple points across the paramedian cortex episodically synchronize immediately before and desynchronize during the lever press. The electrode contacts were grouped according to their temporal course of phase synchrony around the time of lever press. Contact groups presented patches with slightly stronger synchrony values in the medio-lateral direction, and did not appear to form parasagittal zones. Spatiotemporal synchrony of high frequency field potentials has not been reported at such large-scales previously in the cerebellar cortex

    Excitation and Excitability of Unipolar Brush Cells

    Get PDF
    __Abstract__ The cerebellum is a distinct brain structure that ensures the spatial accuracy and temporal coordination of movements. It is located superimposed on the brainstem and has an appearance and organization unlike that of the cerebral cortex: its surface has a highly regular foliation pattern, and its neural circuitry is organized in repeated structured modules. Neural activity enters the cerebellum via two excitatory pathways, the mossy ber system and the climbing ber system. Climbing bers originate from the inferior olivary nucleus in the brainstem, and assert a powerful in uence on cerebellar output and long-term adaptation processes. Mossy bers originate from a large number of sources, and carry contextual information on sensory inputs, aspects of motor planning and commands, and proprioceptive feedback. In the cerebellum this information is evaluated and integrated, to produce neural output that in uences ongoing movement directly. Mossy ber signals are processed in the cerebellum in three stages. In the granular layer, the input stage of the cerebellum, mossy ber signals undergo a recoding step where they are combined and expanded by granule cells. Next, in the molecular layer, granule cell signals are integrated with climbing ber signals in Purkinje cells. Together, the granular la
    • …
    corecore