3,532 research outputs found

    Mining large-scale human mobility data for long-term crime prediction

    Full text link
    Traditional crime prediction models based on census data are limited, as they fail to capture the complexity and dynamics of human activity. With the rise of ubiquitous computing, there is the opportunity to improve such models with data that make for better proxies of human presence in cities. In this paper, we leverage large human mobility data to craft an extensive set of features for crime prediction, as informed by theories in criminology and urban studies. We employ averaging and boosting ensemble techniques from machine learning, to investigate their power in predicting yearly counts for different types of crimes occurring in New York City at census tract level. Our study shows that spatial and spatio-temporal features derived from Foursquare venues and checkins, subway rides, and taxi rides, improve the baseline models relying on census and POI data. The proposed models achieve absolute R^2 metrics of up to 65% (on a geographical out-of-sample test set) and up to 89% (on a temporal out-of-sample test set). This proves that, next to the residential population of an area, the ambient population there is strongly predictive of the area's crime levels. We deep-dive into the main crime categories, and find that the predictive gain of the human dynamics features varies across crime types: such features bring the biggest boost in case of grand larcenies, whereas assaults are already well predicted by the census features. Furthermore, we identify and discuss top predictive features for the main crime categories. These results offer valuable insights for those responsible for urban policy or law enforcement

    Modeling Time-Series and Spatial Data for Recommendations and Other Applications

    Full text link
    With the research directions described in this thesis, we seek to address the critical challenges in designing recommender systems that can understand the dynamics of continuous-time event sequences. We follow a ground-up approach, i.e., first, we address the problems that may arise due to the poor quality of CTES data being fed into a recommender system. Later, we handle the task of designing accurate recommender systems. To improve the quality of the CTES data, we address a fundamental problem of overcoming missing events in temporal sequences. Moreover, to provide accurate sequence modeling frameworks, we design solutions for points-of-interest recommendation, i.e., models that can handle spatial mobility data of users to various POI check-ins and recommend candidate locations for the next check-in. Lastly, we highlight that the capabilities of the proposed models can have applications beyond recommender systems, and we extend their abilities to design solutions for large-scale CTES retrieval and human activity prediction. A significant part of this thesis uses the idea of modeling the underlying distribution of CTES via neural marked temporal point processes (MTPP). Traditional MTPP models are stochastic processes that utilize a fixed formulation to capture the generative mechanism of a sequence of discrete events localized in continuous time. In contrast, neural MTPP combine the underlying ideas from the point process literature with modern deep learning architectures. The ability of deep-learning models as accurate function approximators has led to a significant gain in the predictive prowess of neural MTPP models. In this thesis, we utilize and present several neural network-based enhancements for the current MTPP frameworks for the aforementioned real-world applications.Comment: Ph.D. Thesis (2022

    Modeling Spatial Trajectories using Coarse-Grained Smartphone Logs

    Full text link
    Current approaches for points-of-interest (POI) recommendation learn the preferences of a user via the standard spatial features such as the POI coordinates, the social network, etc. These models ignore a crucial aspect of spatial mobility -- every user carries their smartphones wherever they go. In addition, with growing privacy concerns, users refrain from sharing their exact geographical coordinates and their social media activity. In this paper, we present REVAMP, a sequential POI recommendation approach that utilizes the user activity on smartphone applications (or apps) to identify their mobility preferences. This work aligns with the recent psychological studies of online urban users, which show that their spatial mobility behavior is largely influenced by the activity of their smartphone apps. In addition, our proposal of coarse-grained smartphone data refers to data logs collected in a privacy-conscious manner, i.e., consisting only of (a) category of the smartphone app and (b) category of check-in location. Thus, REVAMP is not privy to precise geo-coordinates, social networks, or the specific application being accessed. Buoyed by the efficacy of self-attention models, we learn the POI preferences of a user using two forms of positional encodings -- absolute and relative -- with each extracted from the inter-check-in dynamics in the check-in sequence of a user. Extensive experiments across two large-scale datasets from China show the predictive prowess of REVAMP and its ability to predict app- and POI categories.Comment: IEEE Transactions on Big Dat

    Information reuse in dynamic spectrum access

    Get PDF
    Dynamic spectrum access (DSA), where the permission to use slices of radio spectrum is dynamically shifted (in time an in different geographical areas) across various communications services and applications, has been an area of interest from technical and public policy perspectives over the last decade. The underlying belief is that this will increase spectrum utilization, especially since many spectrum bands are relatively unused, ultimately leading to the creation of new and innovative services that exploit the increase in spectrum availability. Determining whether a slice of spectrum, allocated or licensed to a primary user, is available for use by a secondary user at a certain time and in a certain geographic area is a challenging task. This requires 'context information' which is critical to the operation of DSA. Such context information can be obtained in several ways, with different costs, and different quality/usefulness of the information. In this paper, we describe the challenges in obtaining this context information, the potential for the integration of various sources of context information, and the potential for reuse of such information for related and unrelated purposes such as localization and enforcement of spectrum sharing. Since some of the infrastructure for obtaining finegrained context information is likely to be expensive, the reuse of this infrastructure/information and integration of information from less expensive sources are likely to be essential for the economical and technological viability of DSA. © 2013 IEEE

    Distributions of Human Exposure to Ozone During Commuting Hours in Connecticut using the Cellular Device Network

    Get PDF
    Epidemiologic studies have established associations between various air pollutants and adverse health outcomes for adults and children. Due to high costs of monitoring air pollutant concentrations for subjects enrolled in a study, statisticians predict exposure concentrations from spatial models that are developed using concentrations monitored at a few sites. In the absence of detailed information on when and where subjects move during the study window, researchers typically assume that the subjects spend their entire day at home, school or work. This assumption can potentially lead to large exposure assignment bias. In this study, we aim to determine the distribution of the exposure assignment bias for an air pollutant (ozone) when subjects are assumed to be static as compared to accounting for individual mobility. To achieve this goal, we use cell-phone mobility data on approximately 400,000 users in the state of Connecticut during a week in July, 2016, in conjunction with an ozone pollution model, and compare individual ozone exposure assuming static versus mobile scenarios. Our results show that exposure models not taking mobility into account often provide poor estimates of individuals commuting into and out of urban areas: the average 8-hour maximum difference between these estimates can exceed 80 parts per billion (ppb). However, for most of the population, the difference in exposure assignment between the two models is small, thereby validating many current epidemiologic studies focusing on exposure to ozone

    Towards Deep Learning Models for Psychological State Prediction using Smartphone Data: Challenges and Opportunities

    Get PDF
    There is an increasing interest in exploiting mobile sensing technologies and machine learning techniques for mental health monitoring and intervention. Researchers have effectively used contextual information, such as mobility, communication and mobile phone usage patterns for quantifying individuals' mood and wellbeing. In this paper, we investigate the effectiveness of neural network models for predicting users' level of stress by using the location information collected by smartphones. We characterize the mobility patterns of individuals using the GPS metrics presented in the literature and employ these metrics as input to the network. We evaluate our approach on the open-source StudentLife dataset. Moreover, we discuss the challenges and trade-offs involved in building machine learning models for digital mental health and highlight potential future work in this direction.Comment: 6 pages, 2 figures, In Proceedings of the NIPS Workshop on Machine Learning for Healthcare 2017 (ML4H 2017). Colocated with NIPS 201

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN
    corecore