4,551 research outputs found

    Saliency-guided video classification via adaptively weighted learning

    Full text link
    Video classification is productive in many practical applications, and the recent deep learning has greatly improved its accuracy. However, existing works often model video frames indiscriminately, but from the view of motion, video frames can be decomposed into salient and non-salient areas naturally. Salient and non-salient areas should be modeled with different networks, for the former present both appearance and motion information, and the latter present static background information. To address this problem, in this paper, video saliency is predicted by optical flow without supervision firstly. Then two streams of 3D CNN are trained individually for raw frames and optical flow on salient areas, and another 2D CNN is trained for raw frames on non-salient areas. For the reason that these three streams play different roles for each class, the weights of each stream are adaptively learned for each class. Experimental results show that saliency-guided modeling and adaptively weighted learning can reinforce each other, and we achieve the state-of-the-art results.Comment: 6 pages, 1 figure, accepted by ICME 201

    Going Deeper into Action Recognition: A Survey

    Full text link
    Understanding human actions in visual data is tied to advances in complementary research areas including object recognition, human dynamics, domain adaptation and semantic segmentation. Over the last decade, human action analysis evolved from earlier schemes that are often limited to controlled environments to nowadays advanced solutions that can learn from millions of videos and apply to almost all daily activities. Given the broad range of applications from video surveillance to human-computer interaction, scientific milestones in action recognition are achieved more rapidly, eventually leading to the demise of what used to be good in a short time. This motivated us to provide a comprehensive review of the notable steps taken towards recognizing human actions. To this end, we start our discussion with the pioneering methods that use handcrafted representations, and then, navigate into the realm of deep learning based approaches. We aim to remain objective throughout this survey, touching upon encouraging improvements as well as inevitable fallbacks, in the hope of raising fresh questions and motivating new research directions for the reader

    LEARNet Dynamic Imaging Network for Micro Expression Recognition

    Full text link
    Unlike prevalent facial expressions, micro expressions have subtle, involuntary muscle movements which are short-lived in nature. These minute muscle movements reflect true emotions of a person. Due to the short duration and low intensity, these micro-expressions are very difficult to perceive and interpret correctly. In this paper, we propose the dynamic representation of micro-expressions to preserve facial movement information of a video in a single frame. We also propose a Lateral Accretive Hybrid Network (LEARNet) to capture micro-level features of an expression in the facial region. The LEARNet refines the salient expression features in accretive manner by incorporating accretion layers (AL) in the network. The response of the AL holds the hybrid feature maps generated by prior laterally connected convolution layers. Moreover, LEARNet architecture incorporates the cross decoupled relationship between convolution layers which helps in preserving the tiny but influential facial muscle change information. The visual responses of the proposed LEARNet depict the effectiveness of the system by preserving both high- and micro-level edge features of facial expression. The effectiveness of the proposed LEARNet is evaluated on four benchmark datasets: CASME-I, CASME-II, CAS(ME)^2 and SMIC. The experimental results after investigation show a significant improvement of 4.03%, 1.90%, 1.79% and 2.82% as compared with ResNet on CASME-I, CASME-II, CAS(ME)^2 and SMIC datasets respectively.Comment: Dynamic imaging, accretion, lateral, micro expression recognitio
    • …
    corecore