22 research outputs found

    FabTouch: A tool to enable communication and design of tactile and affective fabric experiences

    Get PDF
    The tactile experience of fabric is not only a sensory experience but also an affective one. Our choice of fabric products, like clothing, is often based on how they feel. Effectively communicating such experiences is crucial for designing tactile fabric experiences. However, there remains a lack of comprehensive understanding of the fabric tactile and affective experiences, preventing the development of tools to facilitate the communication of these experiences. In this paper, we examine the fabric experiences of 27 participants towards nine cotton samples. We combine qualitative and quantitative methods to create FabTouch, a novel tool to facilitate a dialogue in the design of fabric experiences. We found six phases of fabric touch experiences including fabric touch responses, sensory associations, and emotional responses. Initial feedback from designers suggested that FabTouch could enrich design processes both in practice and in education and can create inspiration for physical and digital design explorations

    Perceptual Model-Driven Authoring of Plausible Vibrations from User Expectations for Virtual Environments

    Get PDF
    One of the central goals of design is the creation of experiences that are rated favorably in the intended application context. User expectations play an integral role in tactile product quality and tactile plausibility judgments alike. In the vibrotactile authoring process for virtual environments, vibra-tion is created to match the user’s expectations of the presented situational context. Currently, inefficient trial and error approaches attempt to match expectations implicitly. A more efficient, model-driven procedure based explicitly on tactile user expectations would thus be beneficial for author-ing vibrations. In everyday life, we are frequently exposed to various whole-body vibrations. Depending on their temporal and spectral proper-ties we intuitively associate specific perceptual properties such as “tin-gling”. This suggests a systematic relationship between physical parame-ters and perceptual properties. To communicate with potential users about such elicited or expected tactile properties, a standardized design language is proposed. It contains a set of sensory tactile perceptual attributes, which are sufficient to characterize the perceptual space of vibration encountered in everyday life. This design language enables the assessment of quantita-tive tactile perceptual specifications by laypersons that are elicited in situational contexts such as auditory-visual-tactile vehicle scenes. Howev-er, such specifications can also be assessed by providing only verbal de-scriptions of the content of these scenes. Quasi identical ratings observed for both presentation modes suggest that tactile user expectations can be quantified even before any vibration is presented. Such expected perceptu-al specifications are the prerequisite for a subsequent translation into phys-ical vibration parameters. Plausibility can be understood as a similarity judgment between elicited features and expected features. Thus, plausible vibration can be synthesized by maximizing the similarity of the elicited perceptual properties to the expected perceptual properties. Based on the observed relationships between vibration parameters and sensory tactile perceptual attributes, a 1-nearest-neighbor model and a regression model were built. The plausibility of the vibrations synthesized by these models in the context of virtual auditory-visual-tactile vehicle scenes was validat-ed in a perceptual study. The results demonstrated that the perceptual spec-ifications obtained with the design language are sufficient to synthesize vibrations, which are perceived as equally plausible as recorded vibrations in a given situational context. Overall, the demonstrated design method can be a new, more efficient tool for designers authoring vibrations for virtual environments or creating tactile feedback. The method enables further automation of the design process and thus potential time and cost reductions.:Preface III Abstract V Zusammenfassung VII List of Abbreviations XV 1 Introduction 1 1.1 General Introduction 1 1.1 Objectives of the Thesis 4 1.2 Structure of the Thesis 4 2. Tactile Perception in Real and Virtual Environments 7 2.1 Tactile Perception as a Multilayered Process 7 2.1.1 Physical Layer 8 2.1.2 Mechanoreceptor Layer 9 2.1.3 Sensory Layer 19 2.1.4 Affective Layer 26 2.2 Perception of Virtual Environments 29 2.2.1 The Place Illusion 29 2.2.2 The Plausibility Illusion 31 2.3 Approaches for the Authoring of Vibrations 38 2.3.1 Approaches on the Physical Layer 38 2.3.2 Approaches on the Mechanoreceptor Layer 40 2.3.3 Approaches on the Sensory Layer 40 2.3.4 Approaches on the Affective Layer 43 2.4 Summary 43 3. Research Concept 47 3.1 Research Questions 47 3.1.1 Foundations of the Research Concept 47 3.1.2 Research Concept 49 3.2 Limitations 50 4. Development of the Experimental Setup 53 4.1 Hardware 53 4.1.1 Optical Reproduction System 53 4.1.2 Acoustical Reproduction System 54 4.1.3 Whole-Body Vibration Reproduction System 56 4.2 Software 64 4.2.1 Combination of Reproduction Systems for Unimodal and Multimodal Presentation 64 4.2.2 Conducting Perceptual Studies 65 5. Assessment of a Sensory Tactile Design Language for Characterizing Vibration 67 5.1.1 Design Language Requirements 67 5.1.2 Method to Assess the Design Language 69 5.1.3 Goals of this Chapter 70 5.2 Tactile Stimuli 72 5.2.1 Generalization into Excitation Patterns 72 5.2.2 Definition of Parameter Values of the Excitation Patterns 75 5.2.3 Generation of the Stimuli 85 5.2.4 Summary 86 5.3 Assessment of the most relevant Sensory Tactile Perceptual Attributes 86 5.3.1 Experimental Design 87 5.3.2 Participants 88 5.3.3 Results 88 5.3.4 Aggregation and Prioritization 89 5.3.5 Summary 91 5.4 Identification of the Attributes forming the Design Language 92 5.4.1 Experimental Design 93 5.4.2 Participants 95 5.4.3 Results 95 5.4.4 Selecting the Elements of the Sensory Tactile Design Language 106 5.4.5 Summary 109 5.5 Summary and Discussion 109 5.5.1 Summary 109 5.5.2 Discussion 111 6. Quantification of Expected Properties with the Sensory Tactile Design Language 115 6.1 Multimodal Stimuli 116 6.1.1 Selection of the Scenes 116 6.1.2 Recording of the Scenes 117 6.1.3 Recorded Stimuli 119 6.2 Qualitative Communication in the Presence of Vibration 123 6.2.1 Experimental Design 123 6.2.2 Participants 124 6.2.3 Results 124 6.2.4 Summary 126 6.3 Quantitative Communication in the Presence of Vibration 126 6.3.1 Experimental Design 127 6.3.2 Participants 127 6.3.3 Results 127 6.3.4 Summary 129 6.4 Quantitative Communication in the Absence of Vibration 129 6.4.1 Experimental Design 130 6.4.2 Participants 132 6.4.3 Results 132 6.4.4 Summary 134 6.5 Summary and Discussion 135 7. Synthesis Models for the Translation of Sensory Tactile Properties into Vibration 137 7.1 Formalization of the Tactile Plausibility Illusion for Models 139 7.1.1 Formalization of Plausibility 139 7.1.2 Model Boundaries 143 7.2 Investigation of the Influence of Vibration Level on Attribute Ratings 144 7.2.1 Stimuli 145 7.2.2 Experimental Design 145 7.2.3 Participants 146 7.2.4 Results 146 7.2.5 Summary 148 7.3 Comparison of Modulated Vibration to Successive Impulse-like Vibration 148 7.3.1 Stimuli 149 7.3.2 Experimental Design 151 7.3.3 Participants 151 7.3.4 Results 151 7.3.5 Summary 153 7.4 Synthesis Based on the Discrete Estimates of a k-Nearest-Neighbor Classifier 153 7.4.1 Definition of the K-Nearest-Neighbor Classifier 154 7.4.2 Analysis Model 155 7.4.3 Synthesis Model 156 7.4.4 Interpolation of acceleration level for the vibration attribute profile pairs 158 7.4.5 Implementation of the Synthesis 159 7.4.6 Advantages and Disadvantages 164 7.5 Synthesis Based on the Quasi-Continuous Estimates of Regression Models 166 7.5.1 Overall Model Structure 168 7.5.2 Classification of the Excitation Pattern with a Support Vector Machine 171 7.5.3 General Approach to the Regression Models of each Excitation Pattern 178 7.5.4 Synthesis for the Impulse-like Excitation Pattern 181 7.5.5 Synthesis for the Bandlimited White Gaussian Noise Excitation Pattern 187 7.5.6 Synthesis for the Amplitude Modulated Sinusoidal Excitation Pattern 193 7.5.7 Synthesis for the Sinusoidal Excitation Pattern 199 7.5.8 Implementation of the Synthesis 205 7.5.9 Advantages and Disadvantages of the Approach 208 7.6 Validation of the Synthesis Models 210 7.6.1 Stimuli 212 7.6.2 Experimental Design 212 7.6.3 Participants 214 7.6.4 Results 214 7.6.5 Summary 219 7.7 Summary and Discussion 219 7.7.1 Summary 219 7.7.2 Discussion 222 8. General Discussion and Outlook 227 Acknowledgment 237 References 237Eines der zentralen Ziele des Designs von Produkten oder virtuellen Um-gebungen ist die Schaffung von Erfahrungen, die im beabsichtigten An-wendungskontext die Erwartungen der Benutzer erfĂŒllen. GegenwĂ€rtig versucht man im vibrotaktilen Authoring-Prozess mit ineffizienten Trial-and-Error-Verfahren, die Erwartungen an den dargestellten, virtuellen Situationskontext implizit zu erfĂŒllen. Ein effizienteres, modellgetriebenes Verfahren, das explizit auf den taktilen Benutzererwartungen basiert, wĂ€re daher von Vorteil. Im Alltag sind wir hĂ€ufig verschiedenen Ganzkörper-schwingungen ausgesetzt. AbhĂ€ngig von ihren zeitlichen und spektralen Eigenschaften assoziieren wir intuitiv bestimmte Wahrnehmungsmerkmale wie z.B. “kribbeln”. Dies legt eine systematische Beziehung zwischen physikalischen Parametern und Wahrnehmungsmerkmalen nahe. Um mit potentiellen Nutzern ĂŒber hervorgerufene oder erwartete taktile Eigen-schaften zu kommunizieren, wird eine standardisierte Designsprache vor-geschlagen. Sie enthĂ€lt eine Menge von sensorisch-taktilen Wahrneh-mungsmerkmalen, die hinreichend den Wahrnehmungsraum der im Alltag auftretenden Vibrationen charakterisieren. Diese Entwurfssprache ermög-licht die quantitative Beurteilung taktiler Wahrnehmungsmerkmale, die in Situationskontexten wie z.B. auditiv-visuell-taktilen Fahrzeugszenen her-vorgerufen werden. Solche Wahrnehmungsspezifikationen können jedoch auch bewertet werden, indem der Inhalt dieser Szenen verbal beschrieben wird. Quasi identische Bewertungen fĂŒr beide PrĂ€sentationsmodi deuten darauf hin, dass die taktilen Benutzererwartungen quantifiziert werden können, noch bevor eine Vibration prĂ€sentiert wird. Die erwarteten Wahr-nehmungsspezifikationen sind die Voraussetzung fĂŒr eine anschließende Übersetzung in physikalische Schwingungsparameter. Plausible Vibratio-nen können synthetisiert werden, indem die erwarteten Wahrnehmungs-merkmale hervorgerufen werden. Auf der Grundlage der beobachteten Beziehungen zwischen SchwingungsÂŹparametern und sensorisch-taktilen Wahrnehmungsmerkmalen wurden ein 1-Nearest-Neighbor-Modell und ein Regressionsmodell erstellt. Die PlausibilitĂ€t der von diesen Modellen synthetisierten Schwingungen im Kontext virtueller, auditorisch-visuell-taktiler Fahrzeugszenen wurde in einer Wahrnehmungsstudie validiert. Die Ergebnisse zeigten, dass die mit der Designsprache gewonnenen Wahr-nehmungsspezifikationen ausreichen, um Schwingungen zu synthetisieren, die in einem gegebenen Situationskontext als ebenso plausibel empfunden werden wie aufgezeichnete Schwingungen. Die demonstrierte Entwurfsme-thode stellt ein neues, effizienteres Werkzeug fĂŒr Designer dar, die Schwingungen fĂŒr virtuelle Umgebungen erstellen oder taktiles Feedback fĂŒr Produkte erzeugen.:Preface III Abstract V Zusammenfassung VII List of Abbreviations XV 1 Introduction 1 1.1 General Introduction 1 1.1 Objectives of the Thesis 4 1.2 Structure of the Thesis 4 2. Tactile Perception in Real and Virtual Environments 7 2.1 Tactile Perception as a Multilayered Process 7 2.1.1 Physical Layer 8 2.1.2 Mechanoreceptor Layer 9 2.1.3 Sensory Layer 19 2.1.4 Affective Layer 26 2.2 Perception of Virtual Environments 29 2.2.1 The Place Illusion 29 2.2.2 The Plausibility Illusion 31 2.3 Approaches for the Authoring of Vibrations 38 2.3.1 Approaches on the Physical Layer 38 2.3.2 Approaches on the Mechanoreceptor Layer 40 2.3.3 Approaches on the Sensory Layer 40 2.3.4 Approaches on the Affective Layer 43 2.4 Summary 43 3. Research Concept 47 3.1 Research Questions 47 3.1.1 Foundations of the Research Concept 47 3.1.2 Research Concept 49 3.2 Limitations 50 4. Development of the Experimental Setup 53 4.1 Hardware 53 4.1.1 Optical Reproduction System 53 4.1.2 Acoustical Reproduction System 54 4.1.3 Whole-Body Vibration Reproduction System 56 4.2 Software 64 4.2.1 Combination of Reproduction Systems for Unimodal and Multimodal Presentation 64 4.2.2 Conducting Perceptual Studies 65 5. Assessment of a Sensory Tactile Design Language for Characterizing Vibration 67 5.1.1 Design Language Requirements 67 5.1.2 Method to Assess the Design Language 69 5.1.3 Goals of this Chapter 70 5.2 Tactile Stimuli 72 5.2.1 Generalization into Excitation Patterns 72 5.2.2 Definition of Parameter Values of the Excitation Patterns 75 5.2.3 Generation of the Stimuli 85 5.2.4 Summary 86 5.3 Assessment of the most relevant Sensory Tactile Perceptual Attributes 86 5.3.1 Experimental Design 87 5.3.2 Participants 88 5.3.3 Results 88 5.3.4 Aggregation and Prioritization 89 5.3.5 Summary 91 5.4 Identification of the Attributes forming the Design Language 92 5.4.1 Experimental Design 93 5.4.2 Participants 95 5.4.3 Results 95 5.4.4 Selecting the Elements of the Sensory Tactile Design Language 106 5.4.5 Summary 109 5.5 Summary and Discussion 109 5.5.1 Summary 109 5.5.2 Discussion 111 6. Quantification of Expected Properties with the Sensory Tactile Design Language 115 6.1 Multimodal Stimuli 116 6.1.1 Selection of the Scenes 116 6.1.2 Recording of the Scenes 117 6.1.3 Recorded Stimuli 119 6.2 Qualitative Communication in the Presence of Vibration 123 6.2.1 Experimental Design 123 6.2.2 Participants 124 6.2.3 Results 124 6.2.4 Summary 126 6.3 Quantitative Communication in the Presence of Vibration 126 6.3.1 Experimental Design 127 6.3.2 Participants 127 6.3.3 Results 127 6.3.4 Summary 129 6.4 Quantitative Communication in the Absence of Vibration 129 6.4.1 Experimental Design 130 6.4.2 Participants 132 6.4.3 Results 132 6.4.4 Summary 134 6.5 Summary and Discussion 135 7. Synthesis Models for the Translation of Sensory Tactile Properties into Vibration 137 7.1 Formalization of the Tactile Plausibility Illusion for Models 139 7.1.1 Formalization of Plausibility 139 7.1.2 Model Boundaries 143 7.2 Investigation of the Influence of Vibration Level on Attribute Ratings 144 7.2.1 Stimuli 145 7.2.2 Experimental Design 145 7.2.3 Participants 146 7.2.4 Results 146 7.2.5 Summary 148 7.3 Comparison of Modulated Vibration to Successive Impulse-like Vibration 148 7.3.1 Stimuli 149 7.3.2 Experimental Design 151 7.3.3 Participants 151 7.3.4 Results 151 7.3.5 Summary 153 7.4 Synthesis Based on the Discrete Estimates of a k-Nearest-Neighbor Classifier 153 7.4.1 Definition of the K-Nearest-Neighbor Classifier 154 7.4.2 Analysis Model 155 7.4.3 Synthesis Model 156 7.4.4 Interpolation of acceleration level for the vibration attribute profile pairs 158 7.4.5 Implementation of the Synthesis 159 7.4.6 Advantages and Disadvantages 164 7.5 Synthesis Based on the Quasi-Continuous Estimates of Regression Models 166 7.5.1 Overall Model Structure 168 7.5.2 Classification of the Excitation Pattern with a Support Vector Machine 171 7.5.3 General Approach to the Regression Models of each Excitation Pattern 178 7.5.4 Synthesis for the Impulse-like Excitation Pattern 181 7.5.5 Synthesis for the Bandlimited White Gaussian Noise Excitation Pattern 187 7.5.6 Synthesis for the Amplitude Modulated Sinusoidal Excitation Pattern 193 7.5.7 Synthesis for the Sinusoidal Excitation Pattern 199 7.5.8 Implementation of the Synthesis 205 7.5.9 Advantages and Disadvantages of the Approach 208 7.6 Validation of the Synthesis Models 210 7.6.1 Stimuli 212 7.6.2 Experimental Design 212 7.6.3 Participants 214 7.6.4 Results 214 7.6.5 Summary 219 7.7 Summary and Discussion 219 7.7.1 Summary 219 7.7.2 Discussion 222 8. General Discussion and Outlook 227 Acknowledgment 237 References 23

    Advances in Human-Robot Interaction

    Get PDF
    Rapid advances in the field of robotics have made it possible to use robots not just in industrial automation but also in entertainment, rehabilitation, and home service. Since robots will likely affect many aspects of human existence, fundamental questions of human-robot interaction must be formulated and, if at all possible, resolved. Some of these questions are addressed in this collection of papers by leading HRI researchers

    Traces of emergence: an ontological unification of perception, artefact, and process

    Get PDF
    Objects are part of a complex matrix that contain emergent experiences and meanings. Ernesto Rogers once claimed that if a spoon was examined carefully enough, one could establish how the maker would design a city. While this observation from the great Italian architect may be an over-generalisation, it draws upon an important point – the objects that humans create are reflections of ourselves, our beliefs, our feelings, motivations, and drives. In short, our whole material and emotional culture. The study of design revolves around the dynamics between form, the processes of making and the diverse experiences of object interaction and use – ontologies of artefact emergence that articulate with the complex patterning structures and practices that produce all of material culture. There are two dominant narratives we must consider when examining design as a practice of making. One, as a narrative of form evolution derived principally from a hylomorphic designer-agent ontology1 and the other, as a narrative of making and manufacturing understood through ontologies of matter manipulation. The relationship between the two narratives, this work will argue, presents deep and poorly understood problems with respect to the current taxonomies and ontologies describing advanced manufacturing, limiting the conceptual evolution of design thinking and processes of making and manufacturing. Moreover, this work will argue that pattern and patterning motions is a key meta-concept for understanding design practice that has until this point, received a limited amount of attention. While there are emerging paradigms of research including Industry 4.0 and ‘new materialism’, these have not comprehensively addressed the core disconnect between understanding process and understanding perception. The new materialism mostly explores the making processes of ‘craft’ - which have an important relation to and are indeed antecedents of advanced industrial processes – that do not include the conceptual innovations of advanced process control, CAM for instance. Industry 4.0, while offering interesting insights and innovations in terms of process control does not tend to examine the assumptions that go into forming its conceptual landscape – process ‘optimization’ or defect minimization are for instance seen as by definition, good.Objects are part of a complex matrix that contain emergent experiences and meanings. Ernesto Rogers once claimed that if a spoon was examined carefully enough, one could establish how the maker would design a city. While this observation from the great Italian architect may be an over-generalisation, it draws upon an important point – the objects that humans create are reflections of ourselves, our beliefs, our feelings, motivations, and drives. In short, our whole material and emotional culture. The study of design revolves around the dynamics between form, the processes of making and the diverse experiences of object interaction and use – ontologies of artefact emergence that articulate with the complex patterning structures and practices that produce all of material culture. There are two dominant narratives we must consider when examining design as a practice of making. One, as a narrative of form evolution derived principally from a hylomorphic designer-agent ontology1 and the other, as a narrative of making and manufacturing understood through ontologies of matter manipulation. The relationship between the two narratives, this work will argue, presents deep and poorly understood problems with respect to the current taxonomies and ontologies describing advanced manufacturing, limiting the conceptual evolution of design thinking and processes of making and manufacturing. Moreover, this work will argue that pattern and patterning motions is a key meta-concept for understanding design practice that has until this point, received a limited amount of attention. While there are emerging paradigms of research including Industry 4.0 and ‘new materialism’, these have not comprehensively addressed the core disconnect between understanding process and understanding perception. The new materialism mostly explores the making processes of ‘craft’ - which have an important relation to and are indeed antecedents of advanced industrial processes – that do not include the conceptual innovations of advanced process control, CAM for instance. Industry 4.0, while offering interesting insights and innovations in terms of process control does not tend to examine the assumptions that go into forming its conceptual landscape – process ‘optimization’ or defect minimization are for instance seen as by definition, good

    ICS Materials. Towards a re-Interpretation of material qualities through interactive, connected, and smart materials.

    Get PDF
    The domain of materials for design is changing under the influence of an increased technological advancement, miniaturization and democratization. Materials are becoming connected, augmented, computational, interactive, active, responsive, and dynamic. These are ICS Materials, an acronym that stands for Interactive, Connected and Smart. While labs around the world are experimenting with these new materials, there is the need to reflect on their potentials and impact on design. This paper is a first step in this direction: to interpret and describe the qualities of ICS materials, considering their experiential pattern, their expressive sensorial dimension, and their aesthetic of interaction. Through case studies, we analyse and classify these emerging ICS Materials and identified common characteristics, and challenges, e.g. the ability to change over time or their programmability by the designers and users. On that basis, we argue there is the need to reframe and redesign existing models to describe ICS materials, making their qualities emerge

    The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE)

    Get PDF

    How do newly arrived international students develop meaningful attachments to and emplaced knowledge of their new city?

    Get PDF
    Psychological theory has traditionally yielded limited and predominantly cognitivist approaches to place and its perception. This thesis applies non-representational and phenomenological approaches to the study of place and space. It employs participatory sensory ethnography as a method for researching narratives of place-making and creative responses to a new city. Place and space theory portrays places as inseparable from meanings invested in them (Thrift, 2008), seeing cities as collections of stories, rather than as fixed locations. They are made by the performative engagements of those who move through them (Ingold, 2000). In researching place making with a cohort of collaborators that came from 16 internationally diverse new arrivals to Manchester and Salford I have curated a series of participatory collaborations from which diverse stories necessarily emerged. These collaborations are modeled on existing sensory modalities (Pink, 2009), creative and technological habits and preferred mobilities of the collaborators. Initially ascertaining the preferences of each collaborator, participants subsequently took the lead in designing creative responses to their new home city. Collaborations included engagements such as walking interviews, the recording of soundscape compositions, participatory photography and the generation of other artefacts. These works reflect an ethical relationship between researcher and participant wherein creativity emerges from a genuine willingness by all parties to use existing practices to respond to a new setting (Shotter, 2008). They yielded sensuous trails that go beyond mere academic reportage. The accumulation of excavated artefacts, maps, films, photographs and short stories supplement the conventional paraphernalia of academic enquiry. They illustrate joint actions (Shotter, 2008) that reflect genuine ethical collaborations. Using these of these collaborative works, I have constructed a critique of existing psychological theories of space and place, highlighting forms of performatively, corporeally, co-productively, relational and sensory place perception
    corecore