1,942 research outputs found

    Modeling and control of operator functional state in a unified framework of fuzzy inference petri nets

    Get PDF
    Background and objective: In human-machine (HM) hybrid control systems, human operator and machine cooperate to achieve the control objectives. To enhance the overall HM system performance, the discrete manual control task-load by the operator must be dynamically allocated in accordance with continuous-time fluctuation of psychophysiological functional status of the operator, so-called operator functional state (OFS). The behavior of the HM system is hybrid in nature due to the co-existence of discrete task-load (control) variable and continuous operator performance (system output) variable. Methods: Petri net is an effective tool for modeling discrete event systems, but for hybrid system involving discrete dynamics, generally Petri net model has to be extended. Instead of using different tools to represent continuous and discrete components of a hybrid system, this paper proposed a method of fuzzy inference Petri nets (FIPN) to represent the HM hybrid system comprising a Mamdani-type fuzzy model of OFS and a logical switching controller in a unified framework, in which the task-load level is dynamically reallocated between the operator and machine based on the model-predicted OFS. Furthermore, this paper used a multi-model approach to predict the operator performance based on three electroencephalographic (EEG) input variables (features) via the Wang-Mendel (WM) fuzzy modeling method. The membership function parameters of fuzzy OFS model for each experimental participant were optimized using artificial bee colony (ABC) evolutionary algorithm. Three performance indices, RMSE, MRE, and EPR, were computed to evaluate the overall modeling accuracy. Results: Experiment data from six participants are analyzed. The results show that the proposed method (FIPN with adaptive task allocation) yields lower breakdown rate (from 14.8% to 3.27%) and higher human performance (from 90.30% to 91.99%). Conclusion: The simulation results of the FIPN-based adaptive HM (AHM) system on six experimental participants demonstrate that the FIPN framework provides an effective way to model and regulate/optimize the OFS in HM hybrid systems composed of continuous-time OFS model and discrete-event switching controller

    Intelligent agent for formal modelling of temporal multi-agent systems

    Get PDF
    Software systems are becoming complex and dynamic with the passage of time, and to provide better fault tolerance and resource management they need to have the ability of self-adaptation. Multi-agent systems paradigm is an active area of research for modeling real-time systems. In this research, we have proposed a new agent named SA-ARTIS-agent, which is designed to work in hard real-time temporal constraints with the ability of self-adaptation. This agent can be used for the formal modeling of any self-adaptive real-time multi-agent system. Our agent integrates the MAPE-K feedback loop with ARTIS agent for the provision of self-adaptation. For an unambiguous description, we formally specify our SA-ARTIS-agent using Time-Communicating Object-Z (TCOZ) language. The objective of this research is to provide an intelligent agent with self-adaptive abilities for the execution of tasks with temporal constraints. Previous works in this domain have used Z language which is not expressive to model the distributed communication process of agents. The novelty of our work is that we specified the non-terminating behavior of agents using active class concept of TCOZ and expressed the distributed communication among agents. For communication between active entities, channel communication mechanism of TCOZ is utilized. We demonstrate the effectiveness of the proposed agent using a real-time case study of traffic monitoring system

    Plausible Petri nets as self-adaptive expert systems: A tool for infrastructure asset monitoring

    Get PDF
    This article provides a computational framework to model self-adaptive expert systems using the Petri net (PN) formalism. Self-adaptive expert systems are understood here as expert systems with the ability to autonomously learn from external inputs, like monitoring data. To this end, the Bayesian learning principles are investigated and also combined with the Plausible PNs (PPNs) methodology. PPNs are a variant within the PN paradigm, which are efficient to jointly consider the dynamics of discrete events, like maintenance actions, together with multiple sources of uncertain information about a state variable. The manuscript shows the mathematical conditions and computational procedure where the Bayesian updating becomes a particular case of a more general basic operation within the PPN execution semantics, which enables the uncertain knowledge being updated from monitoring data. The approach is general, but here it is demonstrated in a novel computational model acting as expert system for railway track inspection management taken as a case study using published data from a laboratory simulation of train loading on ballast. The results reveal selfadaptability and uncertainty management as key enabling aspects to optimize inspection actions in railway track, only being adaptively and autonomously triggered based on the actual learnt state of track and other contextual issues, like resource availability, as opposed to scheduled periodic maintenance activities.Lloyd'sRegister Foundation, Grant/Award Number: RB4539; Engineering and Physical SciencesResearch Council, Grant/Award Number:EP/M023028/

    Uncertainty representation in software models: a survey

    Get PDF
    This paper provides a comprehensive overview and analysis of research work on how uncertainty is currently represented in software models. The survey presents the definitions and current research status of different proposals for addressing uncertainty modeling and introduces a classification framework that allows to compare and classify existing proposals, analyze their current status and identify new trends. In addition, we discuss possible future research directions, opportunities and challenges.This work is partially supported by the European Commission (FEDER) and the Spanish Government under projects APOLO (US1264651), HORATIO (RTI2018-101204-B-C21), EKIPMENT-PLUS (P18-FR-2895) and COSCA (PGC2018-094905-B-I00)

    Development of a conceptual model of adaptive access rights management with using the apparatus of Petri nets

    Get PDF
    The paper describes the conceptual model of adaptive control of cyber protection of the informatization object (IO). Petri's Networks were used as a mathematical device to solve the problem of adaptive control of user access rights. The simulation model is proposed and the simulation in PIPE v4.3.0 package is performed. The possibility of automating the procedures for adjusting the user profile to minimize or neutralize cyber threats in the objects of informatization is shown. The model of distribution of user tasks in computer networks of IO is proposed. The model, unlike the existing, is based on the mathematical apparatus of Petri's Networks and contains variables that allow reducing the power of the state space. Access control method (ACM) is added. The addenda touched upon aspects of reconciliation of access rights that are requested by the task and requirements of the security policy and the degree of consistency of tasks and access to the IO nodes. Adjustment of rules and security metrics for new tasks or redistributable tasks is described in the notation of Petri nets
    corecore