1,550 research outputs found

    Congestion management techniques for disruption-tolerant satellite networks

    Get PDF
    Delay and disruption-tolerant networks are becoming an appealing solution for extending Internet boundaries toward challenged environments where end-to-end connectivity cannot be guaranteed. In particular, satellite networks can take advantage of a priori trajectory estimations of nodes to make efficient routing decisions. Despite this knowledge is already used in routing schemes such as contact graph routing, it might derive in congestion problems because of capacity overbooking of forthcoming connections (contacts). In this work, we initially extend contact graph routing to provide enhanced congestion mitigation capabilities by taking advantage of the local traffic information available at each node. However, since satellite networks data generation is generally managed by a mission operation center, a global view of the traffic can also be exploited to further improve the latter scheme. As a result, we present a novel strategy to avoid congestion in predictable delay- and disruption-tolerant network systems by means of individual contact plans. Finally, we evaluate and compare the performance improvement of these mechanisms in a typical low Earth orbit satellite constellation.Fil: Madoery, Pablo Gustavo. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaFil: Fraire, Juan Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; ArgentinaFil: Finochietto, Jorge Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentin

    Unattended network operations technology assessment study. Technical support for defining advanced satellite systems concepts

    Get PDF
    The results are summarized of an unattended network operations technology assessment study for the Space Exploration Initiative (SEI). The scope of the work included: (1) identified possible enhancements due to the proposed Mars communications network; (2) identified network operations on Mars; (3) performed a technology assessment of possible supporting technologies based on current and future approaches to network operations; and (4) developed a plan for the testing and development of these technologies. The most important results obtained are as follows: (1) addition of a third Mars Relay Satellite (MRS) and MRS cross link capabilities will enhance the network's fault tolerance capabilities through improved connectivity; (2) network functions can be divided into the six basic ISO network functional groups; (3) distributed artificial intelligence technologies will augment more traditional network management technologies to form the technological infrastructure of a virtually unattended network; and (4) a great effort is required to bring the current network technology levels for manned space communications up to the level needed for an automated fault tolerance Mars communications network

    Cyber-Physical Co-Design of Wireless Control Systems

    Get PDF
    Wireless sensor-actuator network (WSAN) technology is gaining rapid adoption in process industries because of its advantages in lowering deployment and maintenance cost in challenging environments. While early success of industrial WSANs has been recognized, significant potential remains in exploring WSANs as unified networks for industrial plants. This thesis research explores a cyber-physical co-design approach to design wireless control systems. To enable holistic studies of wireless control systems, we have developed the Wireless Cyber-Physical Simulator (WCPS), an integrated co-simulation environment that integrates Simulink and our implementation of WSANs based on the industrial WirelessHART standard. We further develop novel WSAN protocols tailored for advanced control designs for networked control systems. WCPS now works as the first simulator that features both linear and nonlinear physical plant models, state-of-art WirelessHART protocol stack, and realistic wireless network characteristics. A realistic wireless structural control study sheds light on the challenges of WSC and the limitations of a traditional structural control approach under realistic wireless conditions. Systematic emergency control results demonstrate that our real-time emergency communication approach enables timely emergency handling, while allowing regular feedback control loops to effectively share resources in WSANs during normal operations. A co-joint study of wireless routing and control highlights the importance of the co-design approach of wireless networks and control

    The Car and The Cloud: Automotive Architectures for 2020

    Get PDF
    Three trends are emerging in drivers’ expectations for their vehicle: (1) continuous connectivity with both the infrastructure (e.g., smart traffic intersections) and other commuters, (2) enhanced levels of productivity and entertainment for the duration of travel, and (3) reduction in cognitive load through semiautonomous operation and automated congestion-aware route planning. To address these demands, vehicles should become more programmable so that almost every aspect of engine control, cabin comfort, connectivity, navigation, and safety will be remotely upgradable and designed to evolve over the lifetime of the vehicle. Progress toward the vehicle of the future will entail new approaches in the design and sustainability of vehicles so that they are connected to networked traffic systems and are programmable over the course of their lifetime. To that end, our automotive research team at the University of Pennsylvania is devel- oping an in-vehicle programmable system, AutoPlug, an automotive architecture for remote diagnostics, testing, and code updates for dispatch from a datacenter to vehicle electronic controller units. For connected vehicles, we are implementing a networked vehicle platform, GrooveNet, that allows communication between real and simulated vehicles to evaluate the feasibility and application of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication; the focus in this paper is on its application to safety. Finally, we are working on a tool for large-scale traffic congestion analysis, AutoMatrix, capable of simulating over 16 million vehicles on any US street map and computing real-time fastest paths for a large subset of vehicles. The tools and platforms described here are free and open-source from the author

    Lunar Relay Satellite Network for Space Exploration: Architecture, Technologies and Challenges

    Get PDF
    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. A key objective of these missions is to grow, through a series of launches, a system of systems infrastructure with the capability for safe and sustainable autonomous operations at minimum cost while maximizing the exploration capabilities and science return. An incremental implementation process will enable a buildup of the communication, navigation, networking, computing, and informatics architectures to support human exploration missions in the vicinities and on the surfaces of the Moon and Mars. These architectures will support all space and surface nodes, including other orbiters, lander vehicles, humans in spacesuits, robots, rovers, human habitats, and pressurized vehicles. This paper describes the integration of an innovative MAC and networking technology with an equally innovative position-dependent, data routing, network technology. The MAC technology provides the relay spacecraft with the capability to autonomously discover neighbor spacecraft and surface nodes, establish variable-rate links and communicate simultaneously with multiple in-space and surface clients at varying and rapidly changing distances while making optimum use of the available power. The networking technology uses attitude sensors, a time synchronization protocol and occasional orbit-corrections to maintain awareness of its instantaneous position and attitude in space as well as the orbital or surface location of its communication clients. A position-dependent data routing capability is used in the communication relay satellites to handle the movement of data among any of multiple clients (including Earth) that may be simultaneously in view; and if not in view, the relay will temporarily store the data from a client source and download it when the destination client comes into view. The integration of the MAC and data routing networking technologies would enable a relay satellite system to provide end-to-end communication services for robotic and human missions in the vicinity, or on the surface of the Moon with a minimum of Earth-based operational support

    Methodologies for the analysis of value from delay-tolerant inter-satellite networking

    Get PDF
    In a world that is becoming increasingly connected, both in the sense of people and devices, it is of no surprise that users of the data enabled by satellites are exploring the potential brought about from a more connected Earth orbit environment. Lower data latency, higher revisit rates and higher volumes of information are the order of the day, and inter-connectivity is one of the ways in which this could be achieved. Within this dissertation, three main topics are investigated and built upon. First, the process of routing data through intermittently connected delay-tolerant networks is examined and a new routing protocol introduced, called Spae. The consideration of downstream resource limitations forms the heart of this novel approach which is shown to provide improvements in data routing that closely match that of a theoretically optimal scheme. Next, the value of inter-satellite networking is derived in such a way that removes the difficult task of costing the enabling inter-satellite link technology. Instead, value is defined as the price one should be willing to pay for the technology while retaining a mission value greater than its non-networking counterpart. This is achieved through the use of multi-attribute utility theory, trade-space analysis and system modelling, and demonstrated in two case studies. Finally, the effects of uncertainty in the form of sub-system failure are considered. Inter-satellite networking is shown to increase a system's resilience to failure through introduction of additional, partially failed states, made possible by data relay. The lifetime value of a system is then captured using a semi-analytical approach exploiting Markov chains, validated with a numerical Monte Carlo simulation approach. It is evident that while inter-satellite networking may offer more value in general, it does not necessarily result in a decrease in the loss of utility over the lifetime.In a world that is becoming increasingly connected, both in the sense of people and devices, it is of no surprise that users of the data enabled by satellites are exploring the potential brought about from a more connected Earth orbit environment. Lower data latency, higher revisit rates and higher volumes of information are the order of the day, and inter-connectivity is one of the ways in which this could be achieved. Within this dissertation, three main topics are investigated and built upon. First, the process of routing data through intermittently connected delay-tolerant networks is examined and a new routing protocol introduced, called Spae. The consideration of downstream resource limitations forms the heart of this novel approach which is shown to provide improvements in data routing that closely match that of a theoretically optimal scheme. Next, the value of inter-satellite networking is derived in such a way that removes the difficult task of costing the enabling inter-satellite link technology. Instead, value is defined as the price one should be willing to pay for the technology while retaining a mission value greater than its non-networking counterpart. This is achieved through the use of multi-attribute utility theory, trade-space analysis and system modelling, and demonstrated in two case studies. Finally, the effects of uncertainty in the form of sub-system failure are considered. Inter-satellite networking is shown to increase a system's resilience to failure through introduction of additional, partially failed states, made possible by data relay. The lifetime value of a system is then captured using a semi-analytical approach exploiting Markov chains, validated with a numerical Monte Carlo simulation approach. It is evident that while inter-satellite networking may offer more value in general, it does not necessarily result in a decrease in the loss of utility over the lifetime

    Mecanismos de rede para swarms de drones em ambientes de monitorização aquática

    Get PDF
    With the development of intelligent platforms for environment sensing, drones present themselves as a fundamental resource capable of responding to the widest range of applications. Monitoring aquatic sensing environments is one such application and the communication between them becomes a key aspect for both navigation and sensing tasks. Testing an aquatic environment with a high number of Unmanned Surface Vehicles (USVs) is very costly, requiring a lot of time and resources. Therefore, simulation platforms become elements of great importance . In this dissertation a simulator is developed containing a modular architecture, based on a delay tolerant network, being capable of simulating aquatic environments as similar as possible to real aquatic environments. In addition to the developed simulator, this dissertation presents methods and strategies of cluster formation, allowing the aquatic drones to select, in a distributed way, the gateways of each cluster that will be responsible for forwarding collected data towards the gateway on land. Two gateway selection methods were implemented, one focused on the energy of aquatic drones, and one considering different metrics such as link quality, centrality and energy. The proposed methods were evaluated across several cases and scenarios, with clusters built and changed in a dynamic way, and it was observed that the election of gateways with a method based on several metrics, together with appropriated control strategy, provides a better outcome of the network behaviour throughout the aquatic monitoring tasks.Com o desenvolvimento de plataformas inteligentes que permitem monitorizar vários ambientes, os drones apresentam-se como um recurso fundamental capaz de responder às mais vastas aplicações. A monitorização de meios aquáticos com recurso a drones é uma destas aplicações e a comunicação entre os mesmos torna-se um aspeto fundamental, tanto em tarefas de navegação como em tarefas de sensorização. Testar um ambiente aquático com um elevado número de drones aquáticos é muito caro, requer muito tempo e vários recursos, por isso, plataformas de simulação tornam-se elementos de grande importância. Nesta dissertação é desenvolvido um simulador, com uma arquitetura modular, tendo por base uma rede tolerante a atrasos, sendo capaz de simular ambientes aquáticos o mais semelhante possível a ambientes aquáticos reais. Para além do simulador desenvolvido, esta dissertação propõe métodos e estratégias de formação de clusters de drones, permitindo que os drones aquáticos elejam, de uma forma distribuída, os gateways de cada cluster que serão responsáveis por encaminhar os dados recolhidos pelos drones em direção à estação em terra. Foram implementados dois métodos de eleição de gateway, um focado na energia dos drones aquáticos, e outro capaz de considerar diferentes métricas, tais como a qualidade de ligação, a centralidade e a energia. Os métodos propostos foram avaliados através de vários cenários em que os clusters são construídos e alterados de forma dinâmica, e foi observado que a escolha de gateways com um método baseado em várias métricas, e juntamente com uma estratégia de controlo apropriada, proporciona um melhor comportamento da rede ao longo das tarefas de monitorização aquática.Mestrado em Engenharia Eletrónica e Telecomunicaçõe
    corecore