1,163 research outputs found

    Adaptivity in High-Performance Embedded Systems: a Reactive Control Model for Reliable and Flexible Design

    Get PDF
    International audienceSystem adaptivity is increasingly demanded in high-performance embedded systems, particularly in multimedia System-on-Chip (SoC), due to growing Quality of Service requirements. This paper presents a reactive control model that has been introduced in Gaspard, our framework dedicated to SoC hardware/software co-design. This model aims at expressing adaptivity as well as reconfigurability in systems performing data-intensive computations. It is generic enough to be used for description in the different parts of an embedded system, e.g. specification of how different data-intensive algorithms can be chosen according to some computation modes at the functional level; expression of how hardware components can be selected via the usage of a library of Intellectual Properties (IPs) according to execution performances. The transformation of this model towards synchronous languages is also presented, in order to allow an automatic code generation usable for formal verification, based of techniques such as model checking and controller synthesis as illustrated in the paper. This work, based on Model-Driven Engineering and the standard UML MARTE profile, has been implemented in Gaspard

    MultiBUGS: A Parallel Implementation of the BUGS Modeling Framework for Faster Bayesian Inference

    Get PDF
    MultiBUGS is a new version of the general-purpose Bayesian modeling software BUGS that implements a generic algorithm for parallelizing Markov chain Monte Carlo (MCMC) algorithms to speed up posterior inference of Bayesian models. The algorithm parallelizes evaluation of the product-form likelihoods formed when a parameter has many children in the directed acyclic graph (DAG) representation; and parallelizes sampling of conditionally-independent sets of parameters. A heuristic algorithm is used to decide which approach to use for each parameter and to apportion computation across computational cores. This enables MultiBUGS to automatically parallelize the broad range of statistical models that can be fitted using BUGS-language software, making the dramatic speed-ups of modern multi-core computing accessible to applied statisticians, without requiring any experience of parallel programming. We demonstrate the use of MultiBUGS on simulated data designed to mimic a hierarchical e-health linked-data study of methadone prescriptions including 425,112 observations and 20,426 random effects. Posterior inference for the e-health model takes several hours in existing software, but MultiBUGS can perform inference in only 28 minutes using 48 computational cores

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types

    ATK-ForceField: A New Generation Molecular Dynamics Software Package

    Full text link
    ATK-ForceField is a software package for atomistic simulations using classical interatomic potentials. It is implemented as a part of the Atomistix ToolKit (ATK), which is a Python programming environment that makes it easy to create and analyze both standard and highly customized simulations. This paper will focus on the atomic interaction potentials, molecular dynamics, and geometry optimization features of the software, however, many more advanced modeling features are available. The implementation details of these algorithms and their computational performance will be shown. We present three illustrative examples of the types of calculations that are possible with ATK-ForceField: modeling thermal transport properties in a silicon germanium crystal, vapor deposition of selenium molecules on a selenium surface, and a simulation of creep in a copper polycrystal.Comment: 28 pages, 9 figure

    Parallel Program Composition with Paragraphs in Stapl

    Get PDF
    Languages and tools currently available for the development of parallel applications are difficult to learn and use. The Standard Template Adaptive Parallel Library (STAPL) is being developed to make it easier for programmers to implement a parallel application. STAPL is a parallel programming library for C++ that adopts the generic programming philosophy of the C++ Standard Template Library. STAPL provides collections of parallel algorithms (pAlgorithms) and containers (pContainers) that allow a developer to write their application without reimplementing the algorithms and data structures commonly used in parallel computing. pViews in STAPL are abstract data types that provide generic data access operations independently of the type of pContainer used to store the data. Algorithms and applications have a formal, high level representation in STAPL. A computation in STAPL is represented as a parallel task graph, which we call a PARAGRAPH. A PARAGRAPH contains a representation of the algorithm's input data, the operations that are used to transform individual data elements, and the ordering between the application of operations that transform the same data element. Just as programs are the result of a composition of algorithms, STAPL programs are the result of a composition of PARAGRAPHs. This dissertation develops the PARAGRAPH program representation and its compositional methods. PARAGRAPHs improve the developer's difficult situation by simplifying what she must specify when writing a parallel algorithm. The performance of the PARAGRAPH is evaluated using parallel generic algorithms, benchmarks from the NAS suite, and a nuclear particle transport application that has been written using STAPL. Our experiments were performed on Cray XT4 and Cray XE6 massively parallel systems and an IBM Power5 cluster, and show that scalable performance beyond 16,000 processors is possible using the PARAGRAPH

    HPCCP/CAS Workshop Proceedings 1998

    Get PDF
    This publication is a collection of extended abstracts of presentations given at the HPCCP/CAS (High Performance Computing and Communications Program/Computational Aerosciences Project) Workshop held on August 24-26, 1998, at NASA Ames Research Center, Moffett Field, California. The objective of the Workshop was to bring together the aerospace high performance computing community, consisting of airframe and propulsion companies, independent software vendors, university researchers, and government scientists and engineers. The Workshop was sponsored by the HPCCP Office at NASA Ames Research Center. The Workshop consisted of over 40 presentations, including an overview of NASA's High Performance Computing and Communications Program and the Computational Aerosciences Project; ten sessions of papers representative of the high performance computing research conducted within the Program by the aerospace industry, academia, NASA, and other government laboratories; two panel sessions; and a special presentation by Mr. James Bailey

    Deploying and Optimizing Embodied Simulations of Large-Scale Spiking Neural Networks on HPC Infrastructure

    Get PDF
    Simulating the brain-body-environment trinity in closed loop is an attractive proposal to investigate how perception, motor activity and interactions with the environment shape brain activity, and vice versa. The relevance of this embodied approach, however, hinges entirely on the modeled complexity of the various simulated phenomena. In this article, we introduce a software framework that is capable of simulating large-scale, biologically realistic networks of spiking neurons embodied in a biomechanically accurate musculoskeletal system that interacts with a physically realistic virtual environment. We deploy this framework on the high performance computing resources of the EBRAINS research infrastructure and we investigate the scaling performance by distributing computation across an increasing number of interconnected compute nodes. Our architecture is based on requested compute nodes as well as persistent virtualmachines; this provides a high-performance simulation environment that is accessible to multidomain users without expert knowledge, with a view to enable users to instantiate and control simulations at custom scale via a web-based graphical user interface. Our simulation environment, entirely open source, is based on the Neurorobotics Platform developed in the context of the Human Brain Project, and the NEST simulator. We characterize the capabilities of our parallelized architecture for large-scale embodied brain simulations through two benchmark experiments, by investigating the effects of scaling compute resources on performance defined in terms of experiment runtime, brain instantiation and simulation time. The first benchmark is based on a largescale balanced network, while the second one is a multi-region embodied brain simulation consisting of more than a million neurons and a billion synapses. Both benchmarks clearly show how scaling compute resources improves the aforementioned performance metrics in a near-linear fashion. The second benchmark in particular is indicative of both the potential and limitations of a highly distributed simulation in terms of a trade-off between computation speed and resource cost. Our simulation architecture is being prepared to be accessible for everyone as an EBRAINS service, thereby offering a community-wide tool with a unique workflow that should provide momentum to the investigation of closed-loop embodiment within the computational neuroscience community.European Union’s Horizon 2020 Framework Programme 785907 945539European Union’s Horizon 2020 800858MEXT (hp200139, hp210169) MEXT KAKENHI grant no. 17H06310

    Deploying and Optimizing Embodied Simulations of Large-Scale Spiking Neural Networks on HPC Infrastructure

    Get PDF
    Simulating the brain-body-environment trinity in closed loop is an attractive proposal to investigate how perception, motor activity and interactions with the environment shape brain activity, and vice versa. The relevance of this embodied approach, however, hinges entirely on the modeled complexity of the various simulated phenomena. In this article, we introduce a software framework that is capable of simulating large-scale, biologically realistic networks of spiking neurons embodied in a biomechanically accurate musculoskeletal system that interacts with a physically realistic virtual environment. We deploy this framework on the high performance computing resources of the EBRAINS research infrastructure and we investigate the scaling performance by distributing computation across an increasing number of interconnected compute nodes. Our architecture is based on requested compute nodes as well as persistent virtual machines; this provides a high-performance simulation environment that is accessible to multi-domain users without expert knowledge, with a view to enable users to instantiate and control simulations at custom scale via a web-based graphical user interface. Our simulation environment, entirely open source, is based on the Neurorobotics Platform developed in the context of the Human Brain Project, and the NEST simulator. We characterize the capabilities of our parallelized architecture for large-scale embodied brain simulations through two benchmark experiments, by investigating the effects of scaling compute resources on performance defined in terms of experiment runtime, brain instantiation and simulation time. The first benchmark is based on a large-scale balanced network, while the second one is a multi-region embodied brain simulation consisting of more than a million neurons and a billion synapses. Both benchmarks clearly show how scaling compute resources improves the aforementioned performance metrics in a near-linear fashion. The second benchmark in particular is indicative of both the potential and limitations of a highly distributed simulation in terms of a trade-off between computation speed and resource cost. Our simulation architecture is being prepared to be accessible for everyone as an EBRAINS service, thereby offering a community-wide tool with a unique workflow that should provide momentum to the investigation of closed-loop embodiment within the computational neuroscience community.journal articl
    corecore