192,766 research outputs found

    A MDE-based process for the design, implementation and validation of safety critical systems

    Get PDF
    Distributed Real-Time Embedded (DRE) systems have critical requirements that need to be verified. They are either related to functional (e.g. stability of a furnace controller) or non-functional (e.g. meeting deadlines) aspects. Model-Driven Engineering (MDE) tools have emerged to ease DRE systems design. These tools are also capable of generating code. However, these tools either focus on the functional aspects or on the runtime architecture. Hence, the development cycle is partitioned into pieces with heterogeneous modeling notations and poor coordination. In this paper, we propose a MDE-based process to create DRE systems without manual coding. We show how to integrate functional and architecture concerns in a unified process. We use industry-proven modeling languages to design functional elements of the system, and automatically integrate them using our AADL toolchain

    Constructing living buildings: a review of relevant technologies for a novel application of biohybrid robotics

    Get PDF
    Biohybrid robotics takes an engineering approach to the expansion and exploitation of biological behaviours for application to automated tasks. Here, we identify the construction of living buildings and infrastructure as a high-potential application domain for biohybrid robotics, and review technological advances relevant to its future development. Construction, civil infrastructure maintenance and building occupancy in the last decades have comprised a major portion of economic production, energy consumption and carbon emissions. Integrating biological organisms into automated construction tasks and permanent building components therefore has high potential for impact. Live materials can provide several advantages over standard synthetic construction materials, including self-repair of damage, increase rather than degradation of structural performance over time, resilience to corrosive environments, support of biodiversity, and mitigation of urban heat islands. Here, we review relevant technologies, which are currently disparate. They span robotics, self-organizing systems, artificial life, construction automation, structural engineering, architecture, bioengineering, biomaterials, and molecular and cellular biology. In these disciplines, developments relevant to biohybrid construction and living buildings are in the early stages, and typically are not exchanged between disciplines. We, therefore, consider this review useful to the future development of biohybrid engineering for this highly interdisciplinary application.publishe

    Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies

    Get PDF
    Since the depletion of fossil energy sources, rising energy prices, and governmental regulation restrictions, the current manufacturing industry is shifting towards more efficient and sustainable systems. This transformation has promoted the identification of energy saving opportunities and the development of new technologies and strategies oriented to improve the energy efficiency of such systems. This paper outlines and discusses most of the research reported during the last decade regarding energy efficiency in manufacturing systems, the current technologies and strategies to improve that efficiency, identifying and remarking those related to the design of management/control strategies. Based on this fact, this paper aims to provide a review of strategies for reducing energy consumption and optimizing the use of resources within a plant into the context of discrete manufacturing. The review performed concerning the current context of manufacturing systems, control systems implemented, and their transformation towards Industry 4.0 might be useful in both the academic and industrial dimension to identify trends and critical points and suggest further research lines.Peer ReviewedPreprin
    corecore