47,323 research outputs found

    Modeling Past and Future for Neural Machine Translation

    Full text link
    Existing neural machine translation systems do not explicitly model what has been translated and what has not during the decoding phase. To address this problem, we propose a novel mechanism that separates the source information into two parts: translated Past contents and untranslated Future contents, which are modeled by two additional recurrent layers. The Past and Future contents are fed to both the attention model and the decoder states, which offers NMT systems the knowledge of translated and untranslated contents. Experimental results show that the proposed approach significantly improves translation performance in Chinese-English, German-English and English-German translation tasks. Specifically, the proposed model outperforms the conventional coverage model in both of the translation quality and the alignment error rate.Comment: Accepted by Transaction of AC

    Dual Past and Future for Neural Machine Translation

    Full text link
    Though remarkable successes have been achieved by Neural Machine Translation (NMT) in recent years, it still suffers from the inadequate-translation problem. Previous studies show that explicitly modeling the Past and Future contents of the source sentence is beneficial for translation performance. However, it is not clear whether the commonly used heuristic objective is good enough to guide the Past and Future. In this paper, we present a novel dual framework that leverages both source-to-target and target-to-source NMT models to provide a more direct and accurate supervision signal for the Past and Future modules. Experimental results demonstrate that our proposed method significantly improves the adequacy of NMT predictions and surpasses previous methods in two well-studied translation tasks

    Dynamic Past and Future for Neural Machine Translation

    Full text link
    Previous studies have shown that neural machine translation (NMT) models can benefit from explicitly modeling translated (Past) and untranslated (Future) to groups of translated and untranslated contents through parts-to-wholes assignment. The assignment is learned through a novel variant of routing-by-agreement mechanism (Sabour et al., 2017), namely {\em Guided Dynamic Routing}, where the translating status at each decoding step {\em guides} the routing process to assign each source word to its associated group (i.e., translated or untranslated content) represented by a capsule, enabling translation to be made from holistic context. Experiments show that our approach achieves substantial improvements over both RNMT and Transformer by producing more adequate translations. Extensive analysis demonstrates that our method is highly interpretable, which is able to recognize the translated and untranslated contents as expected.Comment: Camera-ready version. Accepted to EMNLP 2019 as a long pape

    Learning from Past Mistakes: Improving Automatic Speech Recognition Output via Noisy-Clean Phrase Context Modeling

    Full text link
    Automatic speech recognition (ASR) systems often make unrecoverable errors due to subsystem pruning (acoustic, language and pronunciation models); for example pruning words due to acoustics using short-term context, prior to rescoring with long-term context based on linguistics. In this work we model ASR as a phrase-based noisy transformation channel and propose an error correction system that can learn from the aggregate errors of all the independent modules constituting the ASR and attempt to invert those. The proposed system can exploit long-term context using a neural network language model and can better choose between existing ASR output possibilities as well as re-introduce previously pruned or unseen (out-of-vocabulary) phrases. It provides corrections under poorly performing ASR conditions without degrading any accurate transcriptions; such corrections are greater on top of out-of-domain and mismatched data ASR. Our system consistently provides improvements over the baseline ASR, even when baseline is further optimized through recurrent neural network language model rescoring. This demonstrates that any ASR improvements can be exploited independently and that our proposed system can potentially still provide benefits on highly optimized ASR. Finally, we present an extensive analysis of the type of errors corrected by our system

    Learning to Remember Translation History with a Continuous Cache

    Full text link
    Existing neural machine translation (NMT) models generally translate sentences in isolation, missing the opportunity to take advantage of document-level information. In this work, we propose to augment NMT models with a very light-weight cache-like memory network, which stores recent hidden representations as translation history. The probability distribution over generated words is updated online depending on the translation history retrieved from the memory, endowing NMT models with the capability to dynamically adapt over time. Experiments on multiple domains with different topics and styles show the effectiveness of the proposed approach with negligible impact on the computational cost.Comment: Accepted by TACL 201

    Sequence-to-Sequence Neural Net Models for Grapheme-to-Phoneme Conversion

    Full text link
    Sequence-to-sequence translation methods based on generation with a side-conditioned language model have recently shown promising results in several tasks. In machine translation, models conditioned on source side words have been used to produce target-language text, and in image captioning, models conditioned images have been used to generate caption text. Past work with this approach has focused on large vocabulary tasks, and measured quality in terms of BLEU. In this paper, we explore the applicability of such models to the qualitatively different grapheme-to-phoneme task. Here, the input and output side vocabularies are small, plain n-gram models do well, and credit is only given when the output is exactly correct. We find that the simple side-conditioned generation approach is able to rival the state-of-the-art, and we are able to significantly advance the stat-of-the-art with bi-directional long short-term memory (LSTM) neural networks that use the same alignment information that is used in conventional approaches.Comment: Published in INTERSPEECH 2015, Dresden, German

    Simplifying Neural Machine Translation with Addition-Subtraction Twin-Gated Recurrent Networks

    Full text link
    In this paper, we propose an additionsubtraction twin-gated recurrent network (ATR) to simplify neural machine translation. The recurrent units of ATR are heavily simplified to have the smallest number of weight matrices among units of all existing gated RNNs. With the simple addition and subtraction operation, we introduce a twin-gated mechanism to build input and forget gates which are highly correlated. Despite this simplification, the essential non-linearities and capability of modeling long-distance dependencies are preserved. Additionally, the proposed ATR is more transparent than LSTM/GRU due to the simplification. Forward self-attention can be easily established in ATR, which makes the proposed network interpretable. Experiments on WMT14 translation tasks demonstrate that ATR-based neural machine translation can yield competitive performance on English- German and English-French language pairs in terms of both translation quality and speed. Further experiments on NIST Chinese-English translation, natural language inference and Chinese word segmentation verify the generality and applicability of ATR on different natural language processing tasks.Comment: EMNLP 2018, long paper, source code release

    A Critical Review of Recurrent Neural Networks for Sequence Learning

    Full text link
    Countless learning tasks require dealing with sequential data. Image captioning, speech synthesis, and music generation all require that a model produce outputs that are sequences. In other domains, such as time series prediction, video analysis, and musical information retrieval, a model must learn from inputs that are sequences. Interactive tasks, such as translating natural language, engaging in dialogue, and controlling a robot, often demand both capabilities. Recurrent neural networks (RNNs) are connectionist models that capture the dynamics of sequences via cycles in the network of nodes. Unlike standard feedforward neural networks, recurrent networks retain a state that can represent information from an arbitrarily long context window. Although recurrent neural networks have traditionally been difficult to train, and often contain millions of parameters, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful large-scale learning with them. In recent years, systems based on long short-term memory (LSTM) and bidirectional (BRNN) architectures have demonstrated ground-breaking performance on tasks as varied as image captioning, language translation, and handwriting recognition. In this survey, we review and synthesize the research that over the past three decades first yielded and then made practical these powerful learning models. When appropriate, we reconcile conflicting notation and nomenclature. Our goal is to provide a self-contained explication of the state of the art together with a historical perspective and references to primary research

    Synchronous Bidirectional Neural Machine Translation

    Full text link
    Existing approaches to neural machine translation (NMT) generate the target language sequence token by token from left to right. However, this kind of unidirectional decoding framework cannot make full use of the target-side future contexts which can be produced in a right-to-left decoding direction, and thus suffers from the issue of unbalanced outputs. In this paper, we introduce a synchronous bidirectional neural machine translation (SB-NMT) that predicts its outputs using left-to-right and right-to-left decoding simultaneously and interactively, in order to leverage both of the history and future information at the same time. Specifically, we first propose a new algorithm that enables synchronous bidirectional decoding in a single model. Then, we present an interactive decoding model in which left-to-right (right-to-left) generation does not only depend on its previously generated outputs, but also relies on future contexts predicted by right-to-left (left-to-right) decoding. We extensively evaluate the proposed SB-NMT model on large-scale NIST Chinese-English, WMT14 English-German, and WMT18 Russian-English translation tasks. Experimental results demonstrate that our model achieves significant improvements over the strong Transformer model by 3.92, 1.49 and 1.04 BLEU points respectively, and obtains the state-of-the-art performance on Chinese-English and English-German translation tasks.Comment: Published by TACL 2019, 15 pages, 9 figures, 9 tabel

    Content preserving text generation with attribute controls

    Full text link
    In this work, we address the problem of modifying textual attributes of sentences. Given an input sentence and a set of attribute labels, we attempt to generate sentences that are compatible with the conditioning information. To ensure that the model generates content compatible sentences, we introduce a reconstruction loss which interpolates between auto-encoding and back-translation loss components. We propose an adversarial loss to enforce generated samples to be attribute compatible and realistic. Through quantitative, qualitative and human evaluations we demonstrate that our model is capable of generating fluent sentences that better reflect the conditioning information compared to prior methods. We further demonstrate that the model is capable of simultaneously controlling multiple attributes.Comment: NIPS 201
    • …
    corecore