263,944 research outputs found

    Lifelong Sequential Modeling with Personalized Memorization for User Response Prediction

    Full text link
    User response prediction, which models the user preference w.r.t. the presented items, plays a key role in online services. With two-decade rapid development, nowadays the cumulated user behavior sequences on mature Internet service platforms have become extremely long since the user's first registration. Each user not only has intrinsic tastes, but also keeps changing her personal interests during lifetime. Hence, it is challenging to handle such lifelong sequential modeling for each individual user. Existing methodologies for sequential modeling are only capable of dealing with relatively recent user behaviors, which leaves huge space for modeling long-term especially lifelong sequential patterns to facilitate user modeling. Moreover, one user's behavior may be accounted for various previous behaviors within her whole online activity history, i.e., long-term dependency with multi-scale sequential patterns. In order to tackle these challenges, in this paper, we propose a Hierarchical Periodic Memory Network for lifelong sequential modeling with personalized memorization of sequential patterns for each user. The model also adopts a hierarchical and periodical updating mechanism to capture multi-scale sequential patterns of user interests while supporting the evolving user behavior logs. The experimental results over three large-scale real-world datasets have demonstrated the advantages of our proposed model with significant improvement in user response prediction performance against the state-of-the-arts.Comment: SIGIR 2019. Reproducible codes and datasets: https://github.com/alimamarankgroup/HPM

    DNA-inspired online behavioral modeling and its application to spambot detection

    Get PDF
    We propose a strikingly novel, simple, and effective approach to model online user behavior: we extract and analyze digital DNA sequences from user online actions and we use Twitter as a benchmark to test our proposal. We obtain an incisive and compact DNA-inspired characterization of user actions. Then, we apply standard DNA analysis techniques to discriminate between genuine and spambot accounts on Twitter. An experimental campaign supports our proposal, showing its effectiveness and viability. To the best of our knowledge, we are the first ones to identify and adapt DNA-inspired techniques to online user behavioral modeling. While Twitter spambot detection is a specific use case on a specific social media, our proposed methodology is platform and technology agnostic, hence paving the way for diverse behavioral characterization tasks

    Latent User Intent Modeling for Sequential Recommenders

    Full text link
    Sequential recommender models are essential components of modern industrial recommender systems. These models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform. Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online. Intent modeling is thus critical for understanding users and optimizing long-term user experience. We propose a probabilistic modeling approach and formulate user intent as latent variables, which are inferred based on user behavior signals using variational autoencoders (VAE). The recommendation policy is then adjusted accordingly given the inferred user intent. We demonstrate the effectiveness of the latent user intent modeling via offline analyses as well as live experiments on a large-scale industrial recommendation platform.Comment: The Web Conference 2023, Industry Trac

    Social Dynamics of Digg

    Get PDF
    Online social media provide multiple ways to find interesting content. One important method is highlighting content recommended by user's friends. We examine this process on one such site, the news aggregator Digg. With a stochastic model of user behavior, we distinguish the effects of the content visibility and interestingness to users. We find a wide range of interest and distinguish stories primarily of interest to a users' friends from those of interest to the entire user community. We show how this model predicts a story's eventual popularity from users' early reactions to it, and estimate the prediction reliability. This modeling framework can help evaluate alternative design choices for displaying content on the site.Comment: arXiv admin note: text overlap with arXiv:1010.023
    • …
    corecore