1,134 research outputs found

    A Cervid Vocal Fold Model Suggests Greater Glottal Efficiency in Calling at High Frequencies

    Get PDF
    Male Rocky Mountain elk (Cervus elaphus nelsoni) produce loud and high fundamental frequency bugles during the mating season, in contrast to the male European Red Deer (Cervus elaphus scoticus) who produces loud and low fundamental frequency roaring calls. A critical step in understanding vocal communication is to relate sound complexity to anatomy and physiology in a causal manner. Experimentation at the sound source, often difficult in vivo in mammals, is simulated here by a finite element model of the larynx and a wave propagation model of the vocal tract, both based on the morphology and biomechanics of the elk. The model can produce a wide range of fundamental frequencies. Low fundamental frequencies require low vocal fold strain, but large lung pressure and large glottal flow if sound intensity level is to exceed 70 dB at 10 m distance. A high-frequency bugle requires both large muscular effort (to strain the vocal ligament) and high lung pressure (to overcome phonation threshold pressure), but at least 10 dB more intensity level can be achieved. Glottal efficiency, the ration of radiated sound power to aerodynamic power at the glottis, is higher in elk, suggesting an advantage of high-pitched signaling. This advantage is based on two aspects; first, the lower airflow required for aerodynamic power and, second, an acoustic radiation advantage at higher frequencies. Both signal types are used by the respective males during the mating season and probably serve as honest signals. The two signal types relate differently to physical qualities of the sender. The low-frequency sound (Red Deer call) relates to overall body size via a strong relationship between acoustic parameters and the size of vocal organs and body size. The high-frequency bugle may signal muscular strength and endurance, via a ‘vocalizing at the edge’ mechanism, for which efficiency is critical

    LaDIVA: A neurocomputational model providing laryngeal motor control for speech acquisition and production

    Get PDF
    Many voice disorders are the result of intricate neural and/or biomechanical impairments that are poorly understood. The limited knowledge of their etiological and pathophysiological mechanisms hampers effective clinical management. Behavioral studies have been used concurrently with computational models to better understand typical and pathological laryngeal motor control. Thus far, however, a unified computational framework that quantitatively integrates physiologically relevant models of phonation with the neural control of speech has not been developed. Here, we introduce LaDIVA, a novel neurocomputational model with physiologically based laryngeal motor control. We combined the DIVA model (an established neural network model of speech motor control) with the extended body-cover model (a physics-based vocal fold model). The resulting integrated model, LaDIVA, was validated by comparing its model simulations with behavioral responses to perturbations of auditory vocal fundamental frequency (fo) feedback in adults with typical speech. LaDIVA demonstrated capability to simulate different modes of laryngeal motor control, ranging from short-term (i.e., reflexive) and long-term (i.e., adaptive) auditory feedback paradigms, to generating prosodic contours in speech. Simulations showed that LaDIVA’s laryngeal motor control displays properties of motor equivalence, i.e., LaDIVA could robustly generate compensatory responses to reflexive vocal fo perturbations with varying initial laryngeal muscle activation levels leading to the same output. The model can also generate prosodic contours for studying laryngeal motor control in running speech. LaDIVA can expand the understanding of the physiology of human phonation to enable, for the first time, the investigation of causal effects of neural motor control in the fine structure of the vocal signal.Fil: Weerathunge, Hasini R.. Boston University; Estados UnidosFil: Alzamendi, Gabriel Alejandro. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; ArgentinaFil: Cler, Gabriel J.. University of Washington; Estados UnidosFil: Guenther, Frank H.. Boston University; Estados UnidosFil: Stepp, Cara E.. Boston University; Estados UnidosFil: Zañartu, Matías. Universidad Técnica Federico Santa María; Chil

    The relationships among physiological, acoustical, and perceptual measures of vocal effort

    Full text link
    The purpose of this work was to explore the physiological mechanisms of vocal effort, the acoustical manifestation of vocal effort, and the perceptual interpretation of vocal effort by speakers and listeners. The first study evaluated four proposed mechanisms of vocal effort specific to the larynx: intrinsic laryngeal tension, extrinsic laryngeal tension, supraglottal compression, and subglottal pressure. Twenty-six healthy adults produced modulations of vocal effort (mild, moderate, maximal) and rate (slow, typical, fast), followed by self-ratings of vocal effort on a visual analog scale. Ten physiological measures across the four hypothesized mechanisms were captured via high-speed flexible laryngoscopy, surface electromyography, and neck-surface accelerometry. A mixed-effects backward stepwise regression analysis revealed that estimated subglottal pressure, mediolateral supraglottal compression, and a normalized percent activation of extrinsic suprahyoid muscles significantly increased as ratings of vocal effort increased (R2 = .60). The second study had twenty inexperienced listeners rate vocal effort on the speech recordings from the first study (typical, mild, moderate, and maximal effort) via a visual sort-and-rate method. A set of acoustical measures were calculated, including amplitude-, time-, spectral-, and cepstral-based measures. Two separate mixed-effects regression models determined the relationship between the acoustical predictors and speaker and listener ratings. Results indicated that mean sound pressure level, low-to-high spectral ratio, and harmonic-to-noise ratio significantly predicted speaker and listener ratings. Mean fundamental frequency (measured as change in semitones from typical productions) and relative fundamental frequency offset cycle 10 were also significant predictors of listener ratings. The acoustical predictors accounted for 72% and 82% of the variance in speaker and listener ratings, respectively. Speaker and listener ratings were also highly correlated (average r = .86). From these two studies, we determined that vocal effort is a complex physiological process that is mediated by changes in laryngeal configuration and subglottal pressure. The self-perception of vocal effort is related to the acoustical properties underlying these physiological changes. Listeners appear to rely on the same acoustical manifestations as speakers, yet incorporate additional time-based acoustical cues during perceptual judgments. Future work should explore the physiological, acoustical, and perceptual measures identified here in speakers with voice disorders.2019-07-06T00:00:00

    Triangular body-cover model of the vocal folds with coordinated activation of the five intrinsic laryngeal muscles

    Get PDF
    Poor laryngeal muscle coordination that results in abnormal glottal posturing is believed to be a primary etiologic factor in common voice disorders such as non-phonotraumatic vocal hyperfunction. Abnormal activity of antagonistic laryngeal muscles is hypothesized to play a key role in the alteration of normal vocal fold biomechanics that results in the dysphonia associated with such disorders. Current low-order models of the vocal folds are unsatisfactory to test this hypothesis since they do not capture the co-contraction of antagonist laryngeal muscle pairs. To address this limitation, a self-sustained triangular body-cover model with full intrinsic muscle control is introduced. The proposed scheme shows good agreement with prior studies using finite element models, excised larynges, and clinical studies in sustained and time-varying vocal gestures. Simulations of vocal fold posturing obtained with distinct antagonistic muscle activation yield clear differences in kinematic, aerodynamic, and acoustic measures. The proposed tool is deemed sufficiently accurate and flexible for future comprehensive investigations of non-phonotraumatic vocal hyperfunction and other laryngeal motor control disorders.Fil: Alzamendi, Gabriel Alejandro. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; ArgentinaFil: Peterson, Sean D.. University of Waterloo; CanadáFil: Erath, Byron D.. Clarkson University; Estados UnidosFil: Hillman, Robert E.. Massachusetts General Hospital; Estados UnidosFil: Zañartu, Matías. Universidad Tecnica Federico Santa Maria.; Chil

    Surface Electromyography for Direct Vocal Control

    Get PDF
    This paper introduces a new method for direct control using the voice via measurement of vocal muscular activation with surface electromyography (sEMG). Digital musical interfaces based on the voice have typically used indirect control, in which features extracted from audio signals control the parameters of sound generation, for example in audio to MIDI controllers. By contrast, focusing on the musculature of the singing voice allows direct muscular control, or alternatively, combined direct and indirect control in an augmented vocal instrument. In this way we aim to both preserve the intimate relationship a vocalist has with their instrument and key timbral and stylistic characteristics of the voice while expanding its sonic capabilities. This paper discusses other digital instruments which effectively utilise a combination of indirect and direct control as well as a history of controllers involving the voice. Subsequently, a new method of direct control from physiological aspects of singing through sEMG and its capabilities are discussed. Future developments of the system are further outlined along with usage in performance studies, interactive live vocal performance, and educational and practice tools

    Speech Communication

    Get PDF
    Contains reports on two research projects.National Institutes of Health (Grant 2 ROl1 NS04332)National Institutes of Health (Training Grant 5 T32 NS07040)C.J. LeBel FellowshipsNational Science Foundation (Grant BNS77-26871

    High Fidelity Computational Modeling and Analysis of Voice Production

    Get PDF
    This research aims to improve the fundamental understanding of the multiphysics nature of voice production, particularly, the dynamic couplings among glottal flow, vocal fold vibration and airway acoustics through high-fidelity computational modeling and simulations. Built upon in-house numerical solvers, including an immersed-boundary-method based incompressible flow solver, a finite element method based solid mechanics solver and a hydrodynamic/aerodynamic splitting method based acoustics solver, a fully coupled, continuum mechanics based fluid-structure-acoustics interaction model was developed to simulate the flow-induced vocal fold vibrations and sound production in birds and mammals. Extensive validations of the model were conducted by comparing to excised syringeal and laryngeal experiments. The results showed that, driven by realistic representations of physiology and experimental conditions, including the geometries, material properties and boundary conditions, the model had an excellent agreement with the experiments on the vocal fold vibration patterns, acoustics and intraglottal flow dynamics, demonstrating that the model is able to reproduce realistic phonatory dynamics during voice production. The model was then utilized to investigate the effect of vocal fold inner structures on voice production. Assuming the human vocal fold to be a three-layer structure, this research focused on the effect of longitudinal variation of layer thickness as well as the cover-body thickness ratio on vocal fold vibrations. The results showed that the longitudinal variation of the cover and ligament layers thicknesses had little effect on the flow rate, vocal fold vibration amplitude and pattern but affected the glottal angle in different coronal planes, which also influenced the energy transfer between glottal flow and the vocal fold. The cover-body thickness ratio had a complex nonlinear effect on the vocal fold vibration and voice production. Increasing the cover-body thickness ratio promoted the excitation of the wave-type modes of the vocal fold, which were also higher-eigenfrequency modes, driving the vibrations to higher frequencies. This has created complex nonlinear bifurcations. The results from the research has important clinical implications on voice disorder diagnosis and treatment as voice disorders are often associated with mechanical status changes of the vocal fold tissues and their treatment often focus on restoring the mechanical status of the vocal folds

    Models and analysis of vocal emissions for biomedical applications: 5th International Workshop: December 13-15, 2007, Firenze, Italy

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies. The Workshop has the sponsorship of: Ente Cassa Risparmio di Firenze, COST Action 2103, Biomedical Signal Processing and Control Journal (Elsevier Eds.), IEEE Biomedical Engineering Soc. Special Issues of International Journals have been, and will be, published, collecting selected papers from the conference

    Evaluating the translational potential of relative fundamental frequency

    Get PDF
    Relative fundamental frequency (RFF) is an acoustic measure that quantifies short-term changes in fundamental frequency during voicing transitions surrounding a voiceless consonant. RFF is hypothesized to be decreased by increased laryngeal tension during voice production and has been considered a potential objective measure of vocal hyperfunction. Previous studies have supported claims that decreased RFF values may indicate the severity of vocal hyperfunction and have attempted to improve the methods to obtain RFF. In order to make progress towards developing RFF into a clinical measure, this dissertation aimed to investigate further the validity and reliability of RFF. Specifically, we examined the underlying physiological mechanisms, the auditory-perceptual relationship with strained voice quality, and test-retest reliability. The first study evaluated one of the previously hypothesized physiological mechanisms for RFF, vocal fold abduction. Vocal fold kinematics and RFF were obtained from both younger and older typical speakers producing RFF stimuli with voiceless fricatives and stops during high-speed videoendoscopy. We did not find any statistical differences between younger and older speakers, but we found that vocal folds were less adducted and RFF was lower at voicing onset after the voiceless stop compared to the fricative. This finding is in accordance with the hypothesized positive association between vocal fold contact area during voicing transitions and RFF. The second study examined the relationship between RFF and strain, a major auditory-perceptual feature of vocal hyperfunction. RFF values were synthetically modified by exchanging the RFF contours between voice samples that were produced with a comfortable voice and with maximum vocal effort, while other acoustic features remained constant. We observed that comfortable voice samples with the RFF values of maximum vocal effort samples had increased strain ratings, whereas maximum vocal effort samples with the RFF values of comfortable voice samples had decreased strain ratings. These findings support the contribution of RFF to perceived strain. The third study compared the test-retest reliability of RFF with that of conventional voice measures. We recorded individuals with healthy voices during five consecutive days and obtained acoustic, aerodynamic, and auditory-perceptual measures from the recordings. RFF was comparably reliable as acoustic and aerodynamic measures and more reliable than auditory-perceptual measures. This dissertation supports the translational potential of RFF by providing empirical evidence of the physiological mechanisms of RFF, the relationship between RFF and perceived strain, and test-retest reliability of RFF. Clinical applications of RFF are expected to improve objective diagnosis and assessment of vocal hyperfunction, and thus to lead to better voice care for individuals with vocal hyperfunction.2021-09-25T00:00:00

    Empathic Agent Technology (EAT)

    Get PDF
    A new view on empathic agents is introduced, named: Empathic Agent Technology (EAT). It incorporates a speech analysis, which provides an indication for the amount of tension present in people. It is founded on an indirect physiological measure for the amount of experienced stress, defined as the variability of the fundamental frequency of the human voice. A thorough review of literature is provided on which the EAT is founded. In addition, the complete processing line of this measure is introduced. Hence, the first generally applicable, completely automated technique is introduced that enables the development of truly empathic agents
    • …
    corecore