3,805 research outputs found

    Molecular beam epitaxy of InAs nanowires in SiO2 nanotube templates: challenges and prospects for integration of III-Vs on Si

    Get PDF
    Guided growth of semiconductor nanowires in nanotube templates has been considered as a potential platform for reproducible integration of III-Vs on silicon or other mismatched substrates. Herein, we report on the challenges and prospects of molecular beam epitaxy of InAs nanowires on SiO2/Si nanotube templates. We show how and under which conditions the nanowire growth is initiated by In-assisted vapor-liquid-solid growth enabled by the local conditions inside the nanotube template. The conditions for high yield of vertical nanowires are investigated in terms of the nanotube depth, diameter and V/III flux ratios. We present a model that further substantiates our findings. This work opens new perspectives for monolithic integration of III-Vs on the silicon platform enabling new applications in the electronics, optoelectronics and energy harvesting arena

    Absence of quantum-confined Stark effect in GaN quantum disks embedded in (Al,Ga)N nanowires grown by molecular beam epitaxy

    Get PDF
    Several of the key issues of planar (Al,Ga)N-based deep-ultraviolet light emitting diodes could potentially be overcome by utilizing nanowire heterostructures, exhibiting high structural perfection and improved light extraction. Here, we study the spontaneous emission of GaN/(Al,Ga)N nanowire ensembles grown on Si(111) by plasma-assisted molecular beam epitaxy. The nanowires contain single GaN quantum disks embedded in long (Al,Ga)N nanowire segments essential for efficient light extraction. These quantum disks are found to exhibit intense emission at unexpectedly high energies, namely, significantly above the GaN bandgap, and almost independent of the disk thickness. An in-depth investigation of the actual structure and composition of the nanowires reveals a spontaneously formed Al gradient both along and across the nanowire, resulting in a complex core/shell structure with an Al deficient core and an Al rich shell with continuously varying Al content along the entire length of the (Al,Ga)N segment. This compositional change along the nanowire growth axis induces a polarization doping of the shell that results in a degenerate electron gas in the disk, thus screening the built-in electric fields. The high carrier density not only results in the unexpectedly high transition energies, but also in radiative lifetimes depending only weakly on temperature, leading to a comparatively high internal quantum efficiency of the GaN quantum disks up to room temperature.Comment: This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Nano Letters (2019), copyright (C) American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/acs.nanolett.9b01521, the supporting information is available (free of charge) under the same lin

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    Improving the Fault Tolerance of Nanometric PLA Designs

    Get PDF
    Several alternative building blocks have been proposed to replace planar transistors, among which a prominent spot belongs to nanometric laments such as Silicon NanoWires (SiNWs) and Carbon NanoTubes (CNTs). However, chips leveraging these nanoscale structures are expected to be affected by a large amount of manufacturing faults, way beyond what chip architects have learned to counter. In this paper, we show a design ow, based on software mapping algorithms, to improve the yield of nanometric Programmable Logic Arrays (PLAs). While further improvements to the manufacturing technology will be needed to make these devices fully usable, our ow can signi cantly shrink the gap between current and desired yield levels. Also, our approach does not need post-fabrication functional analysis and mapping, therefore dramatically cutting on veri cation costs. We check PLA yields by means of an accurate analyzer after Monte Carlo fault injection. We show that, compared to a baseline policy of wire replication, we achieve equal or better yields (8% over a set of designs) depending on the underlying defect assumptions

    Present and future of surface-enhanced Raman scattering

    Get PDF
    The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article
    corecore