4,244 research outputs found

    Layered evaluation of interactive adaptive systems : framework and formative methods

    Get PDF
    Peer reviewedPostprin

    Towards a complete multiple-mechanism account of predictive language processing [Commentary on Pickering & Garrod]

    Get PDF
    Although we agree with Pickering & Garrod (P&G) that prediction-by-simulation and prediction-by-association are important mechanisms of anticipatory language processing, this commentary suggests that they: (1) overlook other potential mechanisms that might underlie prediction in language processing, (2) overestimate the importance of prediction-by-association in early childhood, and (3) underestimate the complexity and significance of several factors that might mediate prediction during language processing

    A novel Big Data analytics and intelligent technique to predict driver's intent

    Get PDF
    Modern age offers a great potential for automatically predicting the driver's intent through the increasing miniaturization of computing technologies, rapid advancements in communication technologies and continuous connectivity of heterogeneous smart objects. Inside the cabin and engine of modern cars, dedicated computer systems need to possess the ability to exploit the wealth of information generated by heterogeneous data sources with different contextual and conceptual representations. Processing and utilizing this diverse and voluminous data, involves many challenges concerning the design of the computational technique used to perform this task. In this paper, we investigate the various data sources available in the car and the surrounding environment, which can be utilized as inputs in order to predict driver's intent and behavior. As part of investigating these potential data sources, we conducted experiments on e-calendars for a large number of employees, and have reviewed a number of available geo referencing systems. Through the results of a statistical analysis and by computing location recognition accuracy results, we explored in detail the potential utilization of calendar location data to detect the driver's intentions. In order to exploit the numerous diverse data inputs available in modern vehicles, we investigate the suitability of different Computational Intelligence (CI) techniques, and propose a novel fuzzy computational modelling methodology. Finally, we outline the impact of applying advanced CI and Big Data analytics techniques in modern vehicles on the driver and society in general, and discuss ethical and legal issues arising from the deployment of intelligent self-learning cars

    An integrated theory of language production and comprehension

    Get PDF
    Currently, production and comprehension are regarded as quite distinct in accounts of language processing. In rejecting this dichotomy, we instead assert that producing and understanding are interwoven, and that this interweaving is what enables people to predict themselves and each other. We start by noting that production and comprehension are forms of action and action perception. We then consider the evidence for interweaving in action, action perception, and joint action, and explain such evidence in terms of prediction. Specifically, we assume that actors construct forward models of their actions before they execute those actions, and that perceivers of others' actions covertly imitate those actions, then construct forward models of those actions. We use these accounts of action, action perception, and joint action to develop accounts of production, comprehension, and interactive language. Importantly, they incorporate well-defined levels of linguistic representation (such as semantics, syntax, and phonology). We show (a) how speakers and comprehenders use covert imitation and forward modeling to make predictions at these levels of representation, (b) how they interweave production and comprehension processes, and (c) how they use these predictions to monitor the upcoming utterances. We show how these accounts explain a range of behavioral and neuroscientific data on language processing and discuss some of the implications of our proposal

    Learning under uncertainty in the young and older human brain: Common and distinct mechanisms of different attentional and intentional systems

    Get PDF
    The human brain is able to infer the probability of future events by combining information of past observations with current sensory input. Naturally, we are surrounded by more stimuli than we can pay attention to, so selection of relevant input is crucial. The present thesis aimed at identifying common and distinct neural correlates engaged in predictive processing in spatial attention (selection of attended locations) and motor intention (selection of prepared motor responses). Secondly, age-related influences on probabilistic inference in spatial-attention, feature-based attention (selection of attended color) and motor intention, and the impact of task difficulty were considered. Orienting attention during goal-directed behavior can be supported by visual cues, whereas reorienting to unexpected events following misguiding information is linked to behavioral costs and updating of predictions. These processes can be investigated with a cueing paradigm in which differences in reaction time (RT) between valid and invalidly cued trials increase with higher cue validity (%CV) (Posner, 1980). Bayesian models can describe the experience-dependent learning effects of inferring %CV, following novel events (Vossel et al., 2014c; Vossel, Mathys, Stephan & Friston, 2015). The principle aim of the first experiment was to identify and compare the neural correlates involved in inferring probabilities in the spatial attentional and motor intentional domain. Cues indicated either the possible location or prepared the motor response associated with the target. Instead of a fixed probability context, participants were exposed to a volatile environment, in which the validity of the cue information changed unpredictably over time. Combining functional magnetic resonance imaging (fMRI) data with behavioral estimates derived from a Bayesian learning model (Mathys, Daunizeau, Friston & Stephan, 2011) unveiled domain-specific predictability-dependent responses within the right temporoparietal junction (TPJ) for spatial attention and the left angular gyrus (ANG) and anterior cingulate (ACC) in the motor intention task. The blood oxygen level dependent (BOLD) amplitude particularly increased in accord with violations of cue predictability in high cue validity contexts (i.e. when invalid trials were least expected). Valid trials however, induced no (TPJ and ANG) or decreased modulation (ACC). A further aim was to examine possible commonalities in the neural signatures of predictability-dependent processing. Connectivity analysis uncovered common coupling of all three seed regions involved in predictability-dependent processing with the right anterior hippocampus. Since cognitive functions undergo substantial changes in healthy ageing, a second behavioral study was conducted to test whether age differentially influences probabilistic inference in different attentional subsystems, and how task difficulty impacts on learning performance. Thus, following up on the first experiment, similar tasks and the same computational model was used to assess updating behavior in healthy aging. Older and younger adults performed two separate experiments with different difficulty levels. Each experiment included three versions of a cueing task, entailing predictive spatial- (i.e. location), feature- (i.e. color of target) and motor intention cues (i.e. prepare response). Results of the easier version demonstrated a preserved ability of older adults to generate predictions and profit from all cue types. Interestingly, increased task demand uncovered a reduced ability to use motor intention cues to update predictions in older compared to younger adults. In conclusion, the results provide evidence for a segregated functional anatomy of probabilistic inference in spatial attention and motor intention. Nonetheless a common connectivity profile with the hippocampus also points at commonalities. Finally age seems to differentially impact the efficiency of learning behavior in the motor intention system, supporting the notion of independence of the attentional- and intentional subsystems

    Game Theory and Prescriptive Analytics for Naval Wargaming Battle Management Aids

    Get PDF
    NPS NRP Technical ReportThe Navy is taking advantage of advances in computational technologies and data analytic methods to automate and enhance tactical decisions and support warfighters in highly complex combat environments. Novel automated techniques offer opportunities to support the tactical warfighter through enhanced situational awareness, automated reasoning and problem-solving, and faster decision timelines. This study will investigate how game theory and prescriptive analytics methods can be used to develop real-time wargaming capabilities to support warfighters in their ability to explore and evaluate the possible consequences of different tactical COAs to improve tactical missions. This study will develop a conceptual design of a real-time tactical wargaming capability. This study will explore data analytic methods including game theory, prescriptive analytics, and artificial intelligence (AI) to evaluate their potential to support real-time wargaming.N2/N6 - Information WarfareThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Towards an Expert System for the Analysis of Computer Aided Human Performance

    Get PDF
    corecore