19,059 research outputs found

    Probabilistic Hybrid Action Models for Predicting Concurrent Percept-driven Robot Behavior

    Full text link
    This article develops Probabilistic Hybrid Action Models (PHAMs), a realistic causal model for predicting the behavior generated by modern percept-driven robot plans. PHAMs represent aspects of robot behavior that cannot be represented by most action models used in AI planning: the temporal structure of continuous control processes, their non-deterministic effects, several modes of their interferences, and the achievement of triggering conditions in closed-loop robot plans. The main contributions of this article are: (1) PHAMs, a model of concurrent percept-driven behavior, its formalization, and proofs that the model generates probably, qualitatively accurate predictions; and (2) a resource-efficient inference method for PHAMs based on sampling projections from probabilistic action models and state descriptions. We show how PHAMs can be applied to planning the course of action of an autonomous robot office courier based on analytical and experimental results

    A multidisciplinary research approach to energy-related behavior in buildings

    Get PDF
    Occupant behavior in buildings is one of the key drivers of building energy performance. Closing the “performance gap” in the building sector requires a deeper understanding and consideration of the “human factor” in energy usage. For Europe and US to meet their challenging 2020 and 2050 energy and GHG reduction goals, we need to harness the potential savings of human behavior in buildings, in addition to deployment of energy efficient technologies and energy policies for buildings. Through involvement in international projects such as IEA ECBC Annex 53 and EBC Annex 66, the research conducted in the context of this thesis provided significant contributions to understand occupants’ interactions with building systems and to reduce their energy use in residential and commercial buildings over the entire building life cycle. The primary goal of this Ph.D. study is to explore and highlight the human factor in energy use as a fundamental aspect influencing the energy performance of buildings and maximizing energy efficiency – to the same extent as technological innovation. Scientific literature was reviewed to understand state-of-the-art gaps and limitations of research in the field. Human energy-related behavior in buildings emerges a stochastic and highly complex problem, which cannot be solved by one discipline alone. Typically, a technological-social dichotomy pertains to the human factor in reducing energy use in buildings. Progressing past that, this research integrates occupant behavior in a multidisciplinary approach that combines insights from the technical, analytical and social dimension. This is achieved by combining building physics (occupant behavior simulation in building energy models to quantify impact on building performance) and data science (data mining, analytics, modeling and profiling of behavioral patterns in buildings) with behavioral theories (engaging occupants and motivating energy-saving occupant behaviors) to provide multidisciplinary, innovative insights on human-centered energy efficiency in buildings. The systematic interconnection of these three dimensions is adopted at different scales. The building system is observed at the residential and commercial level. Data is gathered, then analyzed, modeled, standardized and simulated from the zone to the building level, up to the district scale. Concerning occupant behavior, this research focuses on individual, group and collective actions. Various stakeholders can benefit from this Ph.D. dissertation results. Audience of the research includes energy modelers, architects, HVAC engineers, operators, owners, policymakers, building technology vendors, as well as simulation program designers, implementers and evaluators. The connection between these different levels, research foci and targeted audience is not linear among the three observed systems. Rather, the multidisciplinary research approach to energy-related behavior in buildings proposed by this Ph.D. study has been adopted to explore solutions that could overcome the limitations and shortcomings in the state-of-the-art research

    Occupant-Centric Simulation-Aided Building Design Theory, Application, and Case Studies

    Get PDF
    This book promotes occupants as a focal point for the design process

    Modeling Multiple Occupant Behaviors in Buildings for increased Simulation Accuracy: An Agent-Based Modeling Approach

    Get PDF
    The dissertation addresses the limitation of current building energy simulation programs in accounting for occupant behaviors, which have been identified as having significant impact on the overall building energy performance. It introduces a new simulation methodology using an agent- based modeling approach that helps to both predict real-world occupant behaviors observed in an operating building and to calculate behavior impact on energy use and occupant comfort. A series of experiments has been conducted using the new methodology and yielded simulation results that not only distinguish themselves from current simulation practices, but also uncover emerging phenomena that enhance the insights on building dynamics
    • …
    corecore