65,400 research outputs found

    A Classification Model for Sensing Human Trust in Machines Using EEG and GSR

    Full text link
    Today, intelligent machines \emph{interact and collaborate} with humans in a way that demands a greater level of trust between human and machine. A first step towards building intelligent machines that are capable of building and maintaining trust with humans is the design of a sensor that will enable machines to estimate human trust level in real-time. In this paper, two approaches for developing classifier-based empirical trust sensor models are presented that specifically use electroencephalography (EEG) and galvanic skin response (GSR) measurements. Human subject data collected from 45 participants is used for feature extraction, feature selection, classifier training, and model validation. The first approach considers a general set of psychophysiological features across all participants as the input variables and trains a classifier-based model for each participant, resulting in a trust sensor model based on the general feature set (i.e., a "general trust sensor model"). The second approach considers a customized feature set for each individual and trains a classifier-based model using that feature set, resulting in improved mean accuracy but at the expense of an increase in training time. This work represents the first use of real-time psychophysiological measurements for the development of a human trust sensor. Implications of the work, in the context of trust management algorithm design for intelligent machines, are also discussed.Comment: 20 page

    Automatic emotional state detection using facial expression dynamic in videos

    Get PDF
    In this paper, an automatic emotion detection system is built for a computer or machine to detect the emotional state from facial expressions in human computer communication. Firstly, dynamic motion features are extracted from facial expression videos and then advanced machine learning methods for classification and regression are used to predict the emotional states. The system is evaluated on two publicly available datasets, i.e. GEMEP_FERA and AVEC2013, and satisfied performances are achieved in comparison with the baseline results provided. With this emotional state detection capability, a machine can read the facial expression of its user automatically. This technique can be integrated into applications such as smart robots, interactive games and smart surveillance systems

    Dropout Model Evaluation in MOOCs

    Full text link
    The field of learning analytics needs to adopt a more rigorous approach for predictive model evaluation that matches the complex practice of model-building. In this work, we present a procedure to statistically test hypotheses about model performance which goes beyond the state-of-the-practice in the community to analyze both algorithms and feature extraction methods from raw data. We apply this method to a series of algorithms and feature sets derived from a large sample of Massive Open Online Courses (MOOCs). While a complete comparison of all potential modeling approaches is beyond the scope of this paper, we show that this approach reveals a large gap in dropout prediction performance between forum-, assignment-, and clickstream-based feature extraction methods, where the latter is significantly better than the former two, which are in turn indistinguishable from one another. This work has methodological implications for evaluating predictive or AI-based models of student success, and practical implications for the design and targeting of at-risk student models and interventions

    Feature-based time-series analysis

    Full text link
    This work presents an introduction to feature-based time-series analysis. The time series as a data type is first described, along with an overview of the interdisciplinary time-series analysis literature. I then summarize the range of feature-based representations for time series that have been developed to aid interpretable insights into time-series structure. Particular emphasis is given to emerging research that facilitates wide comparison of feature-based representations that allow us to understand the properties of a time-series dataset that make it suited to a particular feature-based representation or analysis algorithm. The future of time-series analysis is likely to embrace approaches that exploit machine learning methods to partially automate human learning to aid understanding of the complex dynamical patterns in the time series we measure from the world.Comment: 28 pages, 9 figure
    • …
    corecore