6,434 research outputs found

    Effect of Values and Technology Use on Exercise: Implications for Personalized Behavior Change Interventions

    Full text link
    Technology has recently been recruited in the war against the ongoing obesity crisis; however, the adoption of Health & Fitness applications for regular exercise is a struggle. In this study, we present a unique demographically representative dataset of 15k US residents that combines technology use logs with surveys on moral views, human values, and emotional contagion. Combining these data, we provide a holistic view of individuals to model their physical exercise behavior. First, we show which values determine the adoption of Health & Fitness mobile applications, finding that users who prioritize the value of purity and de-emphasize values of conformity, hedonism, and security are more likely to use such apps. Further, we achieve a weighted AUROC of .673 in predicting whether individual exercises, and we also show that the application usage data allows for substantially better classification performance (.608) compared to using basic demographics (.513) or internet browsing data (.546). We also find a strong link of exercise to respondent socioeconomic status, as well as the value of happiness. Using these insights, we propose actionable design guidelines for persuasive technologies targeting health behavior modification

    How will the Internet of Things enable Augmented Personalized Health?

    Full text link
    Internet-of-Things (IoT) is profoundly redefining the way we create, consume, and share information. Health aficionados and citizens are increasingly using IoT technologies to track their sleep, food intake, activity, vital body signals, and other physiological observations. This is complemented by IoT systems that continuously collect health-related data from the environment and inside the living quarters. Together, these have created an opportunity for a new generation of healthcare solutions. However, interpreting data to understand an individual's health is challenging. It is usually necessary to look at that individual's clinical record and behavioral information, as well as social and environmental information affecting that individual. Interpreting how well a patient is doing also requires looking at his adherence to respective health objectives, application of relevant clinical knowledge and the desired outcomes. We resort to the vision of Augmented Personalized Healthcare (APH) to exploit the extensive variety of relevant data and medical knowledge using Artificial Intelligence (AI) techniques to extend and enhance human health to presents various stages of augmented health management strategies: self-monitoring, self-appraisal, self-management, intervention, and disease progress tracking and prediction. kHealth technology, a specific incarnation of APH, and its application to Asthma and other diseases are used to provide illustrations and discuss alternatives for technology-assisted health management. Several prominent efforts involving IoT and patient-generated health data (PGHD) with respect converting multimodal data into actionable information (big data to smart data) are also identified. Roles of three components in an evidence-based semantic perception approach- Contextualization, Abstraction, and Personalization are discussed

    PARIS: Personalized Activity Recommendation for Improving Sleep Quality

    Full text link
    The quality of sleep has a deep impact on people's physical and mental health. People with insufficient sleep are more likely to report physical and mental distress, activity limitation, anxiety, and pain. Moreover, in the past few years, there has been an explosion of applications and devices for activity monitoring and health tracking. Signals collected from these wearable devices can be used to study and improve sleep quality. In this paper, we utilize the relationship between physical activity and sleep quality to find ways of assisting people improve their sleep using machine learning techniques. People usually have several behavior modes that their bio-functions can be divided into. Performing time series clustering on activity data, we find cluster centers that would correlate to the most evident behavior modes for a specific subject. Activity recipes are then generated for good sleep quality for each behavior mode within each cluster. These activity recipes are supplied to an activity recommendation engine for suggesting a mix of relaxed to intense activities to subjects during their daily routines. The recommendations are further personalized based on the subjects' lifestyle constraints, i.e. their age, gender, body mass index (BMI), resting heart rate, etc, with the objective of the recommendation being the improvement of that night's quality of sleep. This would in turn serve a longer-term health objective, like lowering heart rate, improving the overall quality of sleep, etc.Comment: 18 pages, 7 figures, Submitted to UMUAI: Special Issue on Recommender Systems for Health and Wellbeing, 202

    Integrating Wearable Devices and Recommendation System: Towards a Next Generation Healthcare Service Delivery

    Get PDF
    Researchers have identified lifestyle diseases as a major threat to human civilization. These diseases gradually progress without giving any warning and result in a sudden health aggravation that leads to a medical emergency. As such, individuals can only avoid the life-threatening condition if they regularly monitor their health status. Health recommendation systems allow users to continuously monitor their health and deliver proper health advice to them. Also, continuous health monitoring depends on the real-time data exchange between health solution providers and users. In this regard, healthcare providers have begun to use wearable devices and recommendation systems to collect data in real time and to manage health conditions based on the generated data. However, we lack literature that has examined how individuals use wearable devices, what type of data the devices collect, and how providers use the data for delivering solutions to users. Thus, we decided to explore the available literature in this domain to understand how wearable devices can provide solutions to consumers. We also extended our focus to cover current health service delivery frameworks with the help of recommender systems. Thus, this study reviews health-monitoring services by conglomerating both wearable device and recommendation system to come up with personalized health and fitness solutions. Additionally, the paper elucidates key components of an advanced-level real-time monitoring service framework to guide future research and practice in this domain

    Heart rate monitoring, activity recognition, and recommendation for e-coaching

    Get PDF
    Equipped with hardware, such as accelerometer and heart rate sensor, wearables enable measuring physical activities and heart rate. However, the accuracy of these heart rate measurements is still unclear and the coupling with activity recognition is often missing in health apps. This study evaluates heart rate monitoring with four different device types: a specialized sports device with chest strap, a fitness tracker, a smart watch, and a smartphone using photoplethysmography. In a state of rest, similar measurement results are obtained with the four devices. During physical activities, the fitness tracker, smart watch, and smartphone measure sudden variations in heart rate with a delay, due to movements of the wrist. Moreover, this study showed that physical activities, such as squats and dumbbell curl, can be recognized with fitness trackers. By combining heart rate monitoring and activity recognition, personal suggestions for physical activities are generated using a tag-based recommender and rule-based filter

    Dynamic physical activity recommendation on personalised mobile health information service: A deep reinforcement learning approach

    Full text link
    Mobile health (mHealth) information service makes healthcare management easier for users, who want to increase physical activity and improve health. However, the differences in activity preference among the individual, adherence problems, and uncertainty of future health outcomes may reduce the effect of the mHealth information service. The current health service system usually provides recommendations based on fixed exercise plans that do not satisfy the user specific needs. This paper seeks an efficient way to make physical activity recommendation decisions on physical activity promotion in personalised mHealth information service by establishing data-driven model. In this study, we propose a real-time interaction model to select the optimal exercise plan for the individual considering the time-varying characteristics in maximising the long-term health utility of the user. We construct a framework for mHealth information service system comprising a personalised AI module, which is based on the scientific knowledge about physical activity to evaluate the individual exercise performance, which may increase the awareness of the mHealth artificial intelligence system. The proposed deep reinforcement learning (DRL) methodology combining two classes of approaches to improve the learning capability for the mHealth information service system. A deep learning method is introduced to construct the hybrid neural network combing long-short term memory (LSTM) network and deep neural network (DNN) techniques to infer the individual exercise behavior from the time series data. A reinforcement learning method is applied based on the asynchronous advantage actor-critic algorithm to find the optimal policy through exploration and exploitation

    Health State Estimation

    Full text link
    Life's most valuable asset is health. Continuously understanding the state of our health and modeling how it evolves is essential if we wish to improve it. Given the opportunity that people live with more data about their life today than any other time in history, the challenge rests in interweaving this data with the growing body of knowledge to compute and model the health state of an individual continually. This dissertation presents an approach to build a personal model and dynamically estimate the health state of an individual by fusing multi-modal data and domain knowledge. The system is stitched together from four essential abstraction elements: 1. the events in our life, 2. the layers of our biological systems (from molecular to an organism), 3. the functional utilities that arise from biological underpinnings, and 4. how we interact with these utilities in the reality of daily life. Connecting these four elements via graph network blocks forms the backbone by which we instantiate a digital twin of an individual. Edges and nodes in this graph structure are then regularly updated with learning techniques as data is continuously digested. Experiments demonstrate the use of dense and heterogeneous real-world data from a variety of personal and environmental sensors to monitor individual cardiovascular health state. State estimation and individual modeling is the fundamental basis to depart from disease-oriented approaches to a total health continuum paradigm. Precision in predicting health requires understanding state trajectory. By encasing this estimation within a navigational approach, a systematic guidance framework can plan actions to transition a current state towards a desired one. This work concludes by presenting this framework of combining the health state and personal graph model to perpetually plan and assist us in living life towards our goals.Comment: Ph.D. Dissertation @ University of California, Irvin

    Effect of a moderate-intensity demonstration walk on accuracy of physical activity self-report.

    Get PDF
    Background/Objective:Providing a demonstration of a 10-minute bout of moderate-to-vigorous intensity physical activity (MVPA) immediately prior to subjective reporting of MVPA could influence self-reported activity by calibrating both duration and intensity. We assessed the effect of a demonstration of MVPA on subsequent MVPA recall, and explored whether this improved agreement with objective measures of MVPA. Methods:A total of 846 individuals participated in four different physical activity interventions; two of which included a 10-minute moderate-intensity demonstration walk on a treadmill at baseline and 6-month visits immediately prior to reporting MVPA. Participants from three studies also wore accelerometers during the week overlapping with self-reported MVPA. Results:Overall, those completing the demonstration walk reported significantly fewer minutes of MVPA per week at baseline (b = -11.69, standard error = 2.53, p < 0.01). The effect of the demonstration walk at 6 months was not significant (p = 0.06). Correlations with accelerometers at baseline were higher in the two studies with the demonstration walk (ρ = 0.28, 0.26) than the study without (ρ = 0.04). Correlations with accelerometers increased overall from baseline to follow-up. Conclusion:A 10-minute demonstration of MVPA was associated with reporting fewer minutes of MVPA and improved agreement with objective PA measures at baseline. These findings support combining self-report PA assessments with hands-on MVPA demonstrations
    corecore