2,131 research outputs found

    Short-segment heart sound classification using an ensemble of deep convolutional neural networks

    Get PDF
    This paper proposes a framework based on deep convolutional neural networks (CNNs) for automatic heart sound classification using short-segments of individual heart beats. We design a 1D-CNN that directly learns features from raw heart-sound signals, and a 2D-CNN that takes inputs of two- dimensional time-frequency feature maps based on Mel-frequency cepstral coefficients (MFCC). We further develop a time-frequency CNN ensemble (TF-ECNN) combining the 1D-CNN and 2D-CNN based on score-level fusion of the class probabilities. On the large PhysioNet CinC challenge 2016 database, the proposed CNN models outperformed traditional classifiers based on support vector machine and hidden Markov models with various hand-crafted time- and frequency-domain features. Best classification scores with 89.22% accuracy and 89.94% sensitivity were achieved by the ECNN, and 91.55% specificity and 88.82% modified accuracy by the 2D-CNN alone on the test set.Comment: 8 pages, 1 figure, conferenc

    Prerequisites for Affective Signal Processing (ASP)

    Get PDF
    Although emotions are embraced by science, their recognition has not reached a satisfying level. Through a concise overview of affect, its signals, features, and classification methods, we provide understanding for the problems encountered. Next, we identify the prerequisites for successful Affective Signal Processing: validation (e.g., mapping of constructs on signals), triangulation, a physiology-driven approach, and contributions of the signal processing community. Using these directives, a critical analysis of a real-world case is provided. This illustrates that the prerequisites can become a valuable guide for Affective Signal Processing (ASP)

    User Affective State Assessment for HCI Systems

    Get PDF

    Classification of stress based on speech features

    Get PDF
    Contemporary life is filled with challenges, hassles, deadlines, disappointments, and endless demands. The consequent of which might be stress. Stress has become a global phenomenon that is been experienced in our modern daily lives. Stress might play a significant role in psychological and/or behavioural disorders like anxiety or depression. Hence early detection of the signs and symptoms of stress is an antidote towards reducing its harmful effects and high cost of stress management efforts. This research work thereby presented Automatic Speech Recognition (ASR) technique to stress detection as a better alternative to other approaches such as chemical analysis, skin conductance, electrocardiograms that are obtrusive, intrusive, and also costly. Two set of voice data was recorded from ten Arabs students at Universiti Utara Malaysia (UUM) in neural and stressed mode. Speech features of fundamental, frequency (f0); formants (F1, F2, and F3), energy and Mel-Frequency Cepstral Coefficients (MFCC) were extracted and classified by K-nearest neighbour, Linear Discriminant Analysis and Artificial Neural Network. Result from average value of fundamental frequency reveals that stress is highly correlated with increase in fundamental frequency value. Of the three classifiers, K-nearest neighbor (KNN) performance is best followed by linear discriminant analysis (LDA) while artificial neural network (ANN) shows the least performance. Stress level classification into low, medium and high was done based of the classification result of KNN. This research shows the viability of ASR as better means of stress detection and classification

    Deep Transfer Learning for Automatic Speech Recognition: Towards Better Generalization

    Full text link
    Automatic speech recognition (ASR) has recently become an important challenge when using deep learning (DL). It requires large-scale training datasets and high computational and storage resources. Moreover, DL techniques and machine learning (ML) approaches in general, hypothesize that training and testing data come from the same domain, with the same input feature space and data distribution characteristics. This assumption, however, is not applicable in some real-world artificial intelligence (AI) applications. Moreover, there are situations where gathering real data is challenging, expensive, or rarely occurring, which can not meet the data requirements of DL models. deep transfer learning (DTL) has been introduced to overcome these issues, which helps develop high-performing models using real datasets that are small or slightly different but related to the training data. This paper presents a comprehensive survey of DTL-based ASR frameworks to shed light on the latest developments and helps academics and professionals understand current challenges. Specifically, after presenting the DTL background, a well-designed taxonomy is adopted to inform the state-of-the-art. A critical analysis is then conducted to identify the limitations and advantages of each framework. Moving on, a comparative study is introduced to highlight the current challenges before deriving opportunities for future research
    corecore