329 research outputs found

    An Approach for Economic Analysis of Intermodal Transportation

    Get PDF
    A different intermodal transportation model based on cost analysis considering technical, economical, and operational parameters is presented. The model consists of such intermodal modes as sea-road, sea-railway, road-railway, and multimode of sea-road-railway. A case study of cargo transportation has been carried out by using the suggested model. Then, the single road transportation mode has been compared to intermodal modes in terms of transportation costs. This comparison takes into account the external costs of intermodal transportation. The research reveals that, in the short distance transportation, single transportation modes always tend to be advantageous. As the transportation distance gets longer, intermodal transportation advantages begin to be effective on the costs. In addition, the proposed method in this study leads to determining the fleet size and capacity for transportation and the appropriate transportation mode

    Analyzing the m-business landscape

    Get PDF
    The m-business landscape never stops to change and the impacts on the mobile market are constant as players reposition themselves on the market according to the new opportunities and threats brought by rapid technological developments. This paper provides a conceptual tool to better understand this player arena and its objective is threefold. The first one is to analyze the role of the key actors using ontology for defining and assessing their business models. The second objective is to analyze and visualize the interaction of actors with each other from a value system perspective. The final objective is to evaluate and represent the dependencies of the actors, their strategies and their convergence or divergence on different issues by using an approach borrowed from policy makin

    A Future-Based Risk Assessment for the Survivability of Long Range Strike Systems

    Get PDF
    The United States Air Force today faces the challenge of allocating development resources to prepare for future force projection requirements. In particular, the Air Force\u27s core competency of Global Attack implies a future capability that can quickly and successfully deliver combat effects anywhere in the world with impunity. Understanding that the future threat environment is dynamic and that continued advancements by adversaries will likely degrade the technical superiority of today\u27s weapon systems, the need arises for a planning model to direct development funding to areas with the greatest probability of successfully defending the strike vehicle of 2035. Examining this problem posed two distinct challenges. The first was to determine the most likely course of Integrated Air Defense System technology through the time period of interest--allowing for plausible disruptive technologies that generate orders-of-magnitude improvement in capability or even change the nature of air defense systems. The second challenge was to characterize future adversaries--requiring a broad look at political and economic trends as presented in AF 2025, SPACECAST 2020 and other relevant future studies. Based on these studies, threat scenarios were generated from technical assessments of emerging technologies and evaluated using the Risk Filtering, Ranking and Management (RFRM) technique (Haimes, 2004) to explore the most severe threats to a future global strike air vehicle. The application of RFRM to the problem created a coherent threat hierarchy that enables the decision maker to examine anticipated hostile systems that may counter key U.S. strengths of stealth, speed, and high altitude operations. Those threat scenarios were then evaluated using decision trees and sensitivity analysis to demonstrate how quantitative tools can be applied to a largely qualitative problem

    Research on Shanghai Port logistics collection and distribution network optimization

    Get PDF

    Ohio River Denial as a Transportation Corridor and Its Economic Impacts on the Energy Industry

    Get PDF
    What if the Ohio River is disrupted or denied partially or completely as a transportation corridor? A disruption may be either a natural or man-made disaster or a planned outage on the river’s lock and dam structures. Recent history is full of water transport disruption events having significant economic effects on the waterside industries. To assess coal-based economic impacts, we developed a network flow model to represent waterside coal-fired power plants situated along the Ohio River, their respective coal supplying mines, and the various transportation modes that connect them. We show that significant transportation-centric insights can be derived by using only commonly available spreadsheet-based analysis tools, open-source information systems, and web-based geographic tools

    The trends and problems in China\u27s north to south grain logistics integration. A case study of COFCO & CM grain exchange Co.

    Get PDF

    Environmental Impact of Aviation and Sustainable Solutions

    Get PDF
    Environmental Impact of Aviation and Sustainable Solutions is a compilation of review and research articles in the broad field of aviation and the environment. Over three sections and thirteen chapters, this book covers topics such as aircraft design and materials, combustor modeling, atomization, airport pollution, sonic boom and street noise pollution, emission mitigation strategies, and environmentally friendly contributions from a Russian aviation pioneer. This volume is a useful reference for both researchers and students interested in learning about various aspects of aviation and the environmen

    Intelligent Hydrogen Fuel Cell Range Extender for Battery Electric Vehicles

    Get PDF
    Road transport is recognized as having a negative impact on the environment. Policy has focused on replacement of the internal combustion engine (ICE) with less polluting forms of technology, including battery electric and fuel cell electric powertrains. However, progress is slow and both battery and fuel cell based vehicles face considerable commercialization challenges. To understand these challenges, a review of current electric battery and fuel cell electric technologies is presented. Based on this review, this paper proposes a battery electric vehicle (BEV) where components are sized to take into account the majority of user requirements, with the remainder catered for by a trailer-based demountable intelligent fuel cell range extender. The proposed design can extend the range by more than 50% for small BEVs and 25% for large BEVs (the extended range of vehicles over 250 miles), reducing cost and increasing efficiency for the BEV. It enables BEV manufacturers to design their vehicle battery for the most common journeys, decreases charging time to provide convenience and flexibility to the drivers. Adopting a rent and drop business model reduces the demand on the raw materials, bridging the gap in the amount of charging (refueling) stations, and extending the lifespan for the battery pack
    corecore