262 research outputs found

    OpenKnowledge at work: exploring centralized and decentralized information gathering in emergency contexts

    Get PDF
    Real-world experience teaches us that to manage emergencies, efficient crisis response coordination is crucial; ICT infrastructures are effective in supporting the people involved in such contexts, by supporting effective ways of interaction. They also should provide innovative means of communication and information management. At present, centralized architectures are mostly used for this purpose; however, alternative infrastructures based on the use of distributed information sources, are currently being explored, studied and analyzed. This paper aims at investigating the capability of a novel approach (developed within the European project OpenKnowledge1) to support centralized as well as decentralized architectures for information gathering. For this purpose we developed an agent-based e-Response simulation environment fully integrated with the OpenKnowledge infrastructure and through which existing emergency plans are modelled and simulated. Preliminary results show the OpenKnowledge capability of supporting the two afore-mentioned architectures and, under ideal assumptions, a comparable performance in both cases

    A Review of Platforms for the Development of Agent Systems

    Full text link
    Agent-based computing is an active field of research with the goal of building autonomous software of hardware entities. This task is often facilitated by the use of dedicated, specialized frameworks. For almost thirty years, many such agent platforms have been developed. Meanwhile, some of them have been abandoned, others continue their development and new platforms are released. This paper presents a up-to-date review of the existing agent platforms and also a historical perspective of this domain. It aims to serve as a reference point for people interested in developing agent systems. This work details the main characteristics of the included agent platforms, together with links to specific projects where they have been used. It distinguishes between the active platforms and those no longer under development or with unclear status. It also classifies the agent platforms as general purpose ones, free or commercial, and specialized ones, which can be used for particular types of applications.Comment: 40 pages, 2 figures, 9 tables, 83 reference

    A Microscopic Simulation Laboratory for Evaluation of Off-street Parking Systems

    Get PDF
    The parking industry produces an enormous amount of data every day that, properly analyzed, will change the way the industry operates. The collected data form patterns that, in most cases, would allow parking operators and property owners to better understand how to maximize revenue and decrease operating expenses and support the decisions such as how to set specific parking policies (e.g. electrical charging only parking space) to achieve the sustainable and eco-friendly parking. However, there lacks an intelligent tool to assess the layout design and operational performance of parking lots to reduce the externalities and increase the revenue. To address this issue, this research presents a comprehensive agent-based framework for microscopic off-street parking system simulation. A rule-based parking simulation logic programming model is formulated. The proposed simulation model can effectively capture the behaviors of drivers and pedestrians as well as spatial and temporal interactions of traffic dynamics in the parking system. A methodology for data collection, processing, and extraction of user behaviors in the parking system is also developed. A Long-Short Term Memory (LSTM) neural network is used to predict the arrival and departure of the vehicles. The proposed simulator is implemented in Java and a Software as a Service (SaaS) graphic user interface is designed to analyze and visualize the simulation results. This study finds the active capacity of the parking system, which is defined as the largest number of actively moving vehicles in the parking system under the facility layout. In the system application of the real world testbed, the numerical tests show (a) the smart check-in device has marginal benefits in vehicle waiting time; (b) the flexible pricing policy may increase the average daily revenue if the elasticity of the price is not involved; (c) the number of electrical charging only spots has a negative impact on the performance of the parking facility; and (d) the rear-in only policy may increase the duration of parking maneuvers and reduce the efficiency during the arrival rush hour. Application of the developed simulation system using a real-world case demonstrates its capability of providing informative quantitative measures to support decisions in designing, maintaining, and operating smart parking facilities

    Towards VEsNA, a Framework for Managing Virtual Environments via Natural Language Agents

    Get PDF
    Automating a factory where robots are involved is neither trivial nor cheap. Engineering the factory automation process in such a way that return of interest is maximized and risk for workers and equipment is minimized, is hence of paramount importance. Simulation can be a game changer in this scenario but requires advanced programming skills that domain experts and industrial designers might not have. In this paper we present the preliminary design and implementation of a general-purpose framework for creating and exploiting Virtual Environments via Natural language Agents (VEsNA). VEsNA takes advantage of agent-based technologies and natural language processing to enhance the design of virtual environments. The natural language input provided to VEsNA is understood by a chatbot and passed to a cognitive intelligent agent that implements the logic behind displacing objects in the virtual environment. In the VEsNA vision, the intelligent agent will be able to reason on this displacement and on its compliance to legal and normative constraints. It will also be able to implement what-if analysis and case-based reasoning. Objects populating the virtual environment will include active objects and will populate a dynamic simulation whose outcomes will be interpreted by the cognitive agent; explanations and suggestions will be passed back to the user by the chatbot

    Improvement of Cooperative Action for Multi-Agent System by Rewards Distribution

    Get PDF
    The frequency of natural disasters is increasing everywhere in the world, which is a major impediment to sustainable development. One important issue for the international community is to reduce vulnerability to and damage from disasters. In addition, a large number of injuries occur simultaneously in a large-scale disaster, and the condition of the injured will change over time. Efficient rescue activities are carried out using triage to determine the priority of injury treatment based on the severity of the persons’ conditions. In this chapter, we discuss acquiring cooperative behavior of rescuing the injured and clearing obstacles according to triage of the injured in a multi-agent system. We propose three methods of reward distribution: (1) reward distribution responding to the condition of the injured, (2) reward distribution based on the contribution degree, and (3) reward distribution by the contribution degree responding to the condition of the injured. We investigated the effectiveness of the three proposed methods for a disaster relief problem by an experiment. The results of the experiment showed that agents gained high rewards by rescuing those in most urgent need under the method having the reward distributed according to the contribution degree responding to the condition of the injured

    Modern Constraint Programming Education: Lessons for the Future

    Full text link
    This paper details an outlook on modern constraint programming (CP) education through the lens of a CP instructor. A general overview of current CP courses and instructional methods is presented, with a focus on online and virtually-delivered courses. This is followed by a discussion of the novel approach taken to introductory CP education for engineering students at large scale at the Georgia Institute of Technology (Georgia Tech) in Atlanta, GA, USA. The paper summarizes important takeaways from the Georgia Tech CP course and ends with a discussion on the future of CP education. Some ideas for instructional methods, promotional methods, and organizational changes are proposed to aid in the long-term growth of CP education.Comment: Paper and presentation for Workshop on Teaching of Constraint Programming (WTCP) 2023 as part of CP 2023, the 29th International Conference on Principles and Practice of Constraint Programmin

    Modeling uncertain and dynamic casualty health in optimization-based decision support for mass casualty incident response

    Get PDF
    When designing a decision support program for use in coordinating the response to Mass Casualty Incidents, the modelling of the health of casualties presents a significant challenge. In this paper we propose one such health model, capable of acknowledging both the uncertain and dynamic nature of casualty health. Incorporating this into a larger optimisation model capable of use in real-time and in an online manner, computational experiments examining the effect of errors in health assessment, regular updates of health and delays in communication are reported. Results demonstrate the often significant impact of these factors

    BDI reasoning with normative considerations

    Get PDF
    F. Meneguzzi thanks Fundaç ao de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, Brazil) for the financial support through the ACI program (Grant ref. 3541-2551/12-0) and the ARD program (Grant ref. 12/0808-5), as well as Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through the Universal Call (Grant ref. 482156/2013-9) and PQ fellowship (Grant ref. 306864/2013-4). N. Oren and W.W. Vasconcelos acknowledge the support of the Engineering and Physical Sciences Research Council (EPSRC, UK) within the research project “Scrutable Autonomous Systems” (SAsSY11, Grant ref. EP/J012084/1).Peer reviewedPostprin

    Automated generation of geometrically-precise and semantically-informed virtual geographic environnements populated with spatially-reasoning agents

    Get PDF
    La Géo-Simulation Multi-Agent (GSMA) est un paradigme de modélisation et de simulation de phénomènes dynamiques dans une variété de domaines d'applications tels que le domaine du transport, le domaine des télécommunications, le domaine environnemental, etc. La GSMA est utilisée pour étudier et analyser des phénomènes qui mettent en jeu un grand nombre d'acteurs simulés (implémentés par des agents) qui évoluent et interagissent avec une représentation explicite de l'espace qu'on appelle Environnement Géographique Virtuel (EGV). Afin de pouvoir interagir avec son environnement géographique qui peut être dynamique, complexe et étendu (à grande échelle), un agent doit d'abord disposer d'une représentation détaillée de ce dernier. Les EGV classiques se limitent généralement à une représentation géométrique du monde réel laissant de côté les informations topologiques et sémantiques qui le caractérisent. Ceci a pour conséquence d'une part de produire des simulations multi-agents non plausibles, et, d'autre part, de réduire les capacités de raisonnement spatial des agents situés. La planification de chemin est un exemple typique de raisonnement spatial dont un agent pourrait avoir besoin dans une GSMA. Les approches classiques de planification de chemin se limitent à calculer un chemin qui lie deux positions situées dans l'espace et qui soit sans obstacle. Ces approches ne prennent pas en compte les caractéristiques de l'environnement (topologiques et sémantiques), ni celles des agents (types et capacités). Les agents situés ne possèdent donc pas de moyens leur permettant d'acquérir les connaissances nécessaires sur l'environnement virtuel pour pouvoir prendre une décision spatiale informée. Pour répondre à ces limites, nous proposons une nouvelle approche pour générer automatiquement des Environnements Géographiques Virtuels Informés (EGVI) en utilisant les données fournies par les Systèmes d'Information Géographique (SIG) enrichies par des informations sémantiques pour produire des GSMA précises et plus réalistes. De plus, nous présentons un algorithme de planification hiérarchique de chemin qui tire avantage de la description enrichie et optimisée de l'EGVI pour fournir aux agents un chemin qui tient compte à la fois des caractéristiques de leur environnement virtuel et de leurs types et capacités. Finalement, nous proposons une approche pour la gestion des connaissances sur l'environnement virtuel qui vise à supporter la prise de décision informée et le raisonnement spatial des agents situés
    • …
    corecore