276 research outputs found

    Modeling Enhancements in DSR, FSR, OLSR under Mobility and Scalability Constraints in VANETs

    Full text link
    Frequent topological changes due to high mobility is one of the main issues in Vehicular Ad-hoc NETworks (VANETs). In this paper, we model transmission probabilities of 802.11p for VANETs and effect of these probabilities on average transmission time. To evaluate the effect of these probabilities of VANETs in routing protocols, we select Dynamic Source Routing (DSR), Fish-eye State Routing (FSR) and Optimized Link State Routing (OLSR). Framework of these protocols with respect to their packet cost is also presented in this work. A novel contribution of this work is enhancement of chosen protocols to obtain efficient behavior. Extensive simulation work is done to prove and compare the efficiency in terms of high throughput of enhanced versions with default versions of protocols in NS-2. For this comparison, we choose three performance metrics; throughput, End-to-End Delay (E2ED) and Normalized Routing Load (NRL) in different mobilities and scalabilities. Finally, we deduce that enhanced DSR (DSR-mod) outperforms other protocols by achieving 16% more packet delivery for all scalabilities and 28% more throughput in selected mobilities than original version of DSR (DSR-orig)

    Auro: Adaptive Unicast Routing Framework for Vehicular Ad Hoc Network

    Get PDF
    A special type of Mobile Ad hoc network (MANET) is Vehicular Ad hoc Network (VANET) and it provides exchange of messages between vehicles. VANET encourages researchers to create safety and comfort applications that will lead to Intelligent Transport Systems (ITS). Link failure in the routing path occurs due to frequent change in the network topology of VANET. To handle this situation, the routing protocol has to initiate either a local repair of route or find a route by broadcasting control overhead packets. This increases the network bandwidth utilization of the VANET. When the number of vehicles increase in VANET, broadcasting of redundant route repair packets increases the collisions in the medium leading to broadcasting storm problem. This paper proposes an Adaptive Unicast ROuting (AURO) framework to address frequent disconnections and broadcast storm problems in VANET. This framework selects suitable protocol from the three unicast routing protocols namely On-demand Proactive with Route Maintenance Protocol (ORPM), Efficient Reactive routing Protocol (ERP) and Stable Routing Protocol (SRP) from the network context and the user requirements. The proposed AURO framework is implemented using NS2 and SUMO simulators. The performance of these protocols were thoroughly analyzed and compared with existing popular protocols

    Software-Defined Network-Based Vehicular Networks: A Position Paper on Their Modeling and Implementation

    Full text link
    There is a strong devotion in the automotive industry to be part of a wider progression towards the Fifth Generation (5G) era. In-vehicle integration costs between cellular and vehicle-to-vehicle networks using Dedicated Short Range Communication could be avoided by adopting Cellular Vehicle-to-Everything (C-V2X) technology with the possibility to re-use the existing mobile network infrastructure. More and more, with the emergence of Software Defined Networks, the flexibility and the programmability of the network have not only impacted the design of new vehicular network architectures but also the implementation of V2X services in future intelligent transportation systems. In this paper, we define the concepts that help evaluate software-defined-based vehicular network systems in the literature based on their modeling and implementation schemes. We first overview the current studies available in the literature on C-V2X technology in support of V2X applications. We then present the different architectures and their underlying system models for LTE-V2X communications. We later describe the key ideas of software-defined networks and their concepts for V2X services. Lastly, we provide a comparative analysis of existing SDN-based vehicular network system grouped according to their modeling and simulation concepts. We provide a discussion and highlight vehicular ad-hoc networks' challenges handled by SDN-based vehicular networks.Comment: 14 pages, 3 figures, Sensors 201

    The Dynamics of Vehicular Networks in Urban Environments

    Full text link
    Vehicular Ad hoc NETworks (VANETs) have emerged as a platform to support intelligent inter-vehicle communication and improve traffic safety and performance. The road-constrained, high mobility of vehicles, their unbounded power source, and the emergence of roadside wireless infrastructures make VANETs a challenging research topic. A key to the development of protocols for inter-vehicle communication and services lies in the knowledge of the topological characteristics of the VANET communication graph. This paper explores the dynamics of VANETs in urban environments and investigates the impact of these findings in the design of VANET routing protocols. Using both real and realistic mobility traces, we study the networking shape of VANETs under different transmission and market penetration ranges. Given that a number of RSUs have to be deployed for disseminating information to vehicles in an urban area, we also study their impact on vehicular connectivity. Through extensive simulations we investigate the performance of VANET routing protocols by exploiting the knowledge of VANET graphs analysis.Comment: Revised our testbed with even more realistic mobility traces. Used the location of real Wi-Fi hotspots to simulate RSUs in our study. Used a larger, real mobility trace set, from taxis in Shanghai. Examine the implications of our findings in the design of VANET routing protocols by implementing in ns-3 two routing protocols (GPCR & VADD). Updated the bibliography section with new research work

    SCALABLE MULTI-HOP DATA DISSEMINATION IN VEHICULAR AD HOC NETWORKS

    Get PDF
    Vehicular Ad hoc Networks (VANETs) aim at improving road safety and travel comfort, by providing self-organizing environments to disseminate traffic data, without requiring fixed infrastructure or centralized administration. Since traffic data is of public interest and usually benefit a group of users rather than a specific individual, it is more appropriate to rely on broadcasting for data dissemination in VANETs. However, broadcasting under dense networks suffers from high percentage of data redundancy that wastes the limited radio channel bandwidth. Moreover, packet collisions may lead to the broadcast storm problem when large number of vehicles in the same vicinity rebroadcast nearly simultaneously. The broadcast storm problem is still challenging in the context of VANET, due to the rapid changes in the network topology, which are difficult to predict and manage. Existing solutions either do not scale well under high density scenarios, or require extra communication overhead to estimate traffic density, so as to manage data dissemination accordingly. In this dissertation, we specifically aim at providing an efficient solution for the broadcast storm problem in VANETs, in order to support different types of applications. A novel approach is developed to provide scalable broadcast without extra communication overhead, by relying on traffic regime estimation using speed data. We theoretically validate the utilization of speed instead of the density to estimate traffic flow. The results of simulating our approach under different density scenarios show its efficiency in providing scalable multi-hop data dissemination for VANETs

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications
    corecore