1,737 research outputs found

    Identifiability and transportability in dynamic causal networks

    Get PDF
    In this paper we propose a causal analog to the purely observational Dynamic Bayesian Networks, which we call Dynamic Causal Networks. We provide a sound and complete algorithm for identification of Dynamic Causal Networks, namely, for computing the effect of an intervention or experiment, based on passive observations only, whenever possible. We note the existence of two types of confounder variables that affect in substantially different ways the identification procedures, a distinction with no analog in either Dynamic Bayesian Networks or standard causal graphs. We further propose a procedure for the transportability of causal effects in Dynamic Causal Network settings, where the result of causal experiments in a source domain may be used for the identification of causal effects in a target domain.Preprin

    Constraint-based Causal Discovery for Non-Linear Structural Causal Models with Cycles and Latent Confounders

    Get PDF
    We address the problem of causal discovery from data, making use of the recently proposed causal modeling framework of modular structural causal models (mSCM) to handle cycles, latent confounders and non-linearities. We introduce {\sigma}-connection graphs ({\sigma}-CG), a new class of mixed graphs (containing undirected, bidirected and directed edges) with additional structure, and extend the concept of {\sigma}-separation, the appropriate generalization of the well-known notion of d-separation in this setting, to apply to {\sigma}-CGs. We prove the closedness of {\sigma}-separation under marginalisation and conditioning and exploit this to implement a test of {\sigma}-separation on a {\sigma}-CG. This then leads us to the first causal discovery algorithm that can handle non-linear functional relations, latent confounders, cyclic causal relationships, and data from different (stochastic) perfect interventions. As a proof of concept, we show on synthetic data how well the algorithm recovers features of the causal graph of modular structural causal models.Comment: Accepted for publication in Conference on Uncertainty in Artificial Intelligence 201

    A Survey on Causal Discovery: Theory and Practice

    Full text link
    Understanding the laws that govern a phenomenon is the core of scientific progress. This is especially true when the goal is to model the interplay between different aspects in a causal fashion. Indeed, causal inference itself is specifically designed to quantify the underlying relationships that connect a cause to its effect. Causal discovery is a branch of the broader field of causality in which causal graphs is recovered from data (whenever possible), enabling the identification and estimation of causal effects. In this paper, we explore recent advancements in a unified manner, provide a consistent overview of existing algorithms developed under different settings, report useful tools and data, present real-world applications to understand why and how these methods can be fruitfully exploited
    • …
    corecore