3,622 research outputs found

    Modeling diffusion directions of Corpus Callosum

    Get PDF
    Diffusion Tensor Imaging (DTI) has been used to study the characteristics of Multiple Sclerosis (MS) in the brain. The von Mises- Fisher distribution (vmf) is a probability distribution for modeling directional data on the unit hypersphere. In this paper we modeled the diffusion directions of the Corpus Callosum (CC) as a mixture of vmf distributions for both MS subjects and healthy controls. Higher diffusion concentration around the mean directions and smaller sum of angles between the mean directions are observed on the normal-appearing CC of the MS subjects as compared to the healthy controls

    Modeling Diffusion Directions of Corpus Callosum

    Get PDF
    Diffusion Tensor Imaging (DTI) has been used to study the characteristics of Multiple Sclerosis (MS) in the brain. The von Mises- Fisher distribution (vmf) is a probability distribution for modeling directional data on the unit hypersphere. In this paper we modeled the diffusion directions of the Corpus Callosum (CC) as a mixture of vmf distributions for both MS subjects and healthy controls. Higher diffusion concentration around the mean directions and smaller sum of angles between the mean directions are observed on the normal-appearing CC of the MS subjects as compared to the healthy controls

    Anisotropic Anomalous Diffusion assessed in the human brain by scalar invariant indices

    Full text link
    A new method to investigate anomalous diffusion in human brain is proposed. The method has been inspired by both the stretched-exponential model proposed by Hall and Barrick (HB) and DTI. Quantities extracted using HB method were able to discriminate different cerebral tissues on the basis of their complexity, expressed by the stretching exponent gamma and of the anisotropy of gamma across different directions. Nevertheless, these quantities were not defined as scalar invariants like mean diffusivity and fractional anisotropy, which are eigenvalues of the diffusion tensor. We hypotesize instead that the signal may be espressed as a simple stretched-exponential only along the principal axes of diffusion, while in a generic direction the signal is modeled as a combination of three different stretched-exponentials. In this way, we derived indices to quantify both the tissue anomalous diffusion and its anisotropy, independently of the reference frame of the experiment. We tested and compare our new method with DTI and HB approaches applying them to 10 healty subjects brain at 3T. Our experimental results show that our parameters are highly correlated to intrinsic local geometry when compared to HB indices. Moreover, they offer a different kind of contrast when compared to DTI outputs. Specifically, our indices show a higher capability to discriminate among different areas of the corpus callosum, which are known to be associated to different axonal densities.Comment: 21 pages, 6 figures, 2 table

    Radiotherapy planning for glioblastoma based on a tumor growth model: Improving target volume delineation

    Get PDF
    Glioblastoma are known to infiltrate the brain parenchyma instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In clinical practice, a uniform margin is applied to account for microscopic spread of disease. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth: Anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. A retrospective study involving 10 glioblastoma patients has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most crucial model input. We conclude that the tumor growth model provides a method to account for anisotropic growth patterns of glioblastoma, and may therefore provide a tool to make target delineation more objective and automated

    Microstructural Correlates of Resilience against Major Depressive Disorder: Epigenetic Mechanisms?

    Get PDF
    Mental disorders are a major cause of long-term disability and are a direct cause of mortality, with approximately 800.000 individuals dying from suicide every year worldwide - a high proportion of them related to major depressive disorder (MDD)^1^. Healthy relatives of patients with major depressive disorder (MDD) are at risk to develop the disease. This higher vulnerability is associated with structural^2-4^ and functional brain changes^5^. However, we found using high angular resolution diffusion imaging (HARDI) with 61 diffusion directions that neuron tracts between frontal cortices and limbic as well as temporal and parietal brain regions are characterized by better diffusion coefficients in unaffected relatives (UHR), who managed to stay healthy, compared to healthy volunteers without any family history for a psychiatric disease (HC). Moreover, those UHR with stronger fibre connections better managed incidences of adversity in early life without later developing depression, while in HC axonal connections were found to be decreased when they had early-life adversity. Altogether these findings indicate the presence of stronger neural fibre connections in UHR, which seem to be associated with resilience against environmental stressors, which we suggest occur through epigenetic mechanisms

    Interleukin-6, age, and corpus callosum integrity.

    Get PDF
    The contribution of inflammation to deleterious aging outcomes is increasingly recognized; however, little is known about the complex relationship between interleukin-6 (IL-6) and brain structure, or how this association might change with increasing age. We examined the association between IL-6, white matter integrity, and cognition in 151 community dwelling older adults, and tested whether age moderated these associations. Blood levels of IL-6 and vascular risk (e.g., homocysteine), as well as health history information, were collected. Processing speed assessments were administered to assess cognitive functioning, and we employed tract-based spatial statistics to examine whole brain white matter and regions of interest. Given the association between inflammation, vascular risk, and corpus callosum (CC) integrity, fractional anisotropy (FA) of the genu, body, and splenium represented our primary dependent variables. Whole brain analysis revealed an inverse association between IL-6 and CC fractional anisotropy. Subsequent ROI linear regression and ridge regression analyses indicated that the magnitude of this effect increased with age; thus, older individuals with higher IL-6 levels displayed lower white matter integrity. Finally, higher IL-6 levels were related to worse processing speed; this association was moderated by age, and was not fully accounted for by CC volume. This study highlights that at older ages, the association between higher IL-6 levels and lower white matter integrity is more pronounced; furthermore, it underscores the important, albeit burgeoning role of inflammatory processes in cognitive aging trajectories

    Disconnected aging: cerebral white matter integrity and age-related differences in cognition.

    Get PDF
    Cognition arises as a result of coordinated processing among distributed brain regions and disruptions to communication within these neural networks can result in cognitive dysfunction. Cortical disconnection may thus contribute to the declines in some aspects of cognitive functioning observed in healthy aging. Diffusion tensor imaging (DTI) is ideally suited for the study of cortical disconnection as it provides indices of structural integrity within interconnected neural networks. The current review summarizes results of previous DTI aging research with the aim of identifying consistent patterns of age-related differences in white matter integrity, and of relationships between measures of white matter integrity and behavioral performance as a function of adult age. We outline a number of future directions that will broaden our current understanding of these brain-behavior relationships in aging. Specifically, future research should aim to (1) investigate multiple models of age-brain-behavior relationships; (2) determine the tract-specificity versus global effect of aging on white matter integrity; (3) assess the relative contribution of normal variation in white matter integrity versus white matter lesions to age-related differences in cognition; (4) improve the definition of specific aspects of cognitive functioning related to age-related differences in white matter integrity using information processing tasks; and (5) combine multiple imaging modalities (e.g., resting-state and task-related functional magnetic resonance imaging; fMRI) with DTI to clarify the role of cerebral white matter integrity in cognitive aging
    • …
    corecore